
Model-Based Calibration Toolbox™
Getting Started Guide

R2019a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Model-Based Calibration Toolbox™ Getting Started Guide
© COPYRIGHT 2005–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
November 2005 Online only New for Version 3.0 (Release 14SP3+)
September 2006 Online only Version 3.1 (Release 2006b)
March 2007 Online only Version 3.2 (Release 2007a)
September 2007 Online only Revised for Version 3.3 (Release 2007b)
March 2008 Online only Revised for Version 3.4 (Release 2008a)
October 2008 Online only Revised for Version 3.4.1(Release 2008a+)
October 2008 Online only Revised for Version 3.5 (Release 2008b)
March 2009 Online only Revised for Version 3.6 (Release 2009a)
September 2009 Online only Revised for Version 3.7 (Release 2009b)
March 2010 Online only Revised for Version 4.0 (Release 2010a)
September 2010 Online only Revised for Version 4.1 (Release 2010b)
April 2011 Online only Revised for Version 4.2 (Release 2011a)
September 2011 Online only Revised for Version 4.3 (Release 2011b)
March 2012 Online only Revised for Version 4.4 (Release 2012a)
September 2012 Online only Revised for Version 4.5 (Release 2012b)
March 2013 Online only Revised for Version 4.6 (Release 2013a)
September 2013 Online only Revised for Version 4.6.1 (Release 2013b)
March 2014 Online only Revised for Version 4.7 (Release 2014a)
October 2014 Online only Revised for Version 4.8 (Release 2014b)
March 2015 Online only Revised for Version 4.8.1 (Release 2015a)
September 2015 Online only Revised for Version 5.0 (Release 2015b)
March 2016 Online only Revised for Version 5.1 (Release 2016a)
September 2016 Online only Revised for Version 5.2 (Release 2016b)
March 2017 Online only Revised for Version 5.2.1 (Release 2017a)
September 2017 Online only Revised for Version 5.3 (Release 2017b)
March 2018 Online only Revised for Version 5.4 (Release 2018a)
September 2018 Online only Revised for Version 5.5 (Release 2018b)
March 2019 Online only Revised for Version 5.6 (Release 2019a)

Introduction
1

Model-Based Calibration Toolbox Product Description 1-2
Key Features . 1-2

What Is Model-Based Calibration? . 1-3
Designs and Modeling in the Model Browser 1-4
Calibration Generation in CAGE . 1-4

Gasoline Engine Calibration
2

Gasoline Case Study Overview . 2-2
Gasoline Calibration Problem Definition 2-2
Case Study Example Files . 2-3

Design of Experiment . 2-5
Context . 2-5
Benefits of Design of Experiment . 2-5
Power Envelope Survey Testing . 2-5
Create Designs and Collect Data . 2-6
Data Collection and Physical Modeling 2-13

Empirical Engine Modeling . 2-15
Examine Response Models . 2-15
Examine the Test Plan . 2-19

Optimization . 2-20
Optimization Overview . 2-20
View Optimization Results . 2-21
Set Up Optimization . 2-23

v

Contents

Filling Tables From Optimization Results 2-27

Design and Modeling Scripts
3

Introduction to the Command-Line Interface 3-2

Automate Design and Modeling With Scripts 3-3
Processes You Can Automate . 3-3
Engine Modeling Scripts . 3-5

Understanding Model Structure for Scripting 3-7
Projects and Test Plans for Model Scripting 3-7
Response Model Scripting . 3-7
Boundary Model Scripting . 3-9

How the Model Tree Relates to Command-Line Objects 3-11

Multi-Injection Diesel Calibration
4

Multi-Injection Diesel Calibration Workflow 4-2
Multi-Injection Diesel Problem Definition 4-2
Engine Calibration Workflow . 4-7
Air-System Survey Testing . 4-8
Multi-Injection Testing . 4-9
Data Collection and Physical Modeling 4-10
Statistical Modeling . 4-11
Optimization Using Statistical Models 4-12
Case Study Example Files . 4-20

Design of Experiment . 4-22
Benefits of Design of Experiment . 4-22
Air-System Survey Testing . 4-22
Create Designs and Collect Data . 4-23
Fit a Boundary Model to Air Survey Data 4-29

vi Contents

Use the Air Survey and Boundary Model to Create the Final
Design . 4-32

Multi-Injection Testing . 4-34

Statistical Modeling . 4-35
Examine the Test Plans for Point-by-Point Models 4-35
Examine Response Models . 4-39

Optimization . 4-41
Optimization Overview . 4-41
Set Up Models and Tables for Optimization 4-41
Examine the Point Optimization Setup 4-44
Examine the Point Optimization Results 4-48
Create Sum Optimization from Point Optimization 4-51
Fill Tables from Optimization Results 4-57
Examine the Multiobjective Optimization 4-67

Model Quickstart
5

Use a Two-Stage Model To Predict Engine Torque 5-2
Open the App and Load Data . 5-4
Set Up the Model . 5-5
Verify the Model . 5-8
Export the Model . 5-11
Create Multiple Models to Compare 5-11

Generate Current Controller Calibration Tables for Flux-Based
Motor Controllers . 5-18

Collect and Post Process Motor Data 5-19
Model Motor Data . 5-20
Generate Calibration . 5-25

Mapped Engine Lookup Tables . 5-44

Mapped CI Lookup Tables as Functions of Fuel Mass and
Engine Speed . 5-45

Use Test Plan Template to Fit Models 5-45
Open CAGE Project . 5-48
Use CAGE to Import and Replace Models 5-56

vii

Review and Export Tables . 5-58

Mapped CI Lookup Tables as Functions of Engine Torque and
Speed . 5-59

Use Test Plan Template to Fit Models 5-59
Open CAGE Project . 5-62
Use CAGE to Import and Replace Models 5-71
Review and Export Tables . 5-73

Mapped SI Lookup Tables as Functions of Engine Torque and
Speed . 5-74

Use Test Plan Template to Fit Models 5-74
Open CAGE Project . 5-77
Use CAGE to Import and Replace Models 5-84
Review and Export Tables . 5-86

Design of Experiment
6

Design of Experiments . 6-2
Why Use Design of Experiment? . 6-2
Design Styles . 6-3
Create Examples Using the Design Editor 6-3

Set Up a Model and Create a Design . 6-5
Set Up Model Inputs . 6-5
Open the Design Editor . 6-5
Create a New Design . 6-6

Create a Constrained Space-Filling Design 6-7
Apply Constraints . 6-7

View Design Displays . 6-12

Use the Prediction Error Variance Viewer 6-14
Introducing the Prediction Error Variance Viewer 6-14
Add Points Optimally . 6-17

viii Contents

Data Editor for Modeling
7

Manipulate Data for Modeling . 7-2
View and Edit the Data . 7-2
Create New Variables and Filters . 7-6
Store and Import Variables, Filters, and Plot Preferences 7-7
Define Test Groupings . 7-8
Match Data to Experimental Designs 7-10

Tradeoff Calibration
8

Setup and Perform a Tradeoff Calibration 8-2
What Is a Tradeoff Calibration? . 8-2
Setting Up a Tradeoff Calibration . 8-2
Performing the Tradeoff Calibration . 8-7

Data Sets
9

Compare Calibrations To Data . 9-2
Setting Up the Data Set . 9-2
Comparing the Items in a Data Set . 9-6
Reassigning Variables . 9-13

Filling Tables from Data
10

Fill Tables from Data . 10-2
Setting Up a Table and Experimental Data 10-2
Filling the Table from the Experimental Data 10-7
Selecting Regions of the Data . 10-10

ix

Exporting the Calibration . 10-12

Optimization and Automated Tradeoff
11

Optimization and Automated Tradeoff 11-2
Import Models to Optimize . 11-2

Model-Based Calibration Toolbox Examples
12

Loading and Modifying Data . 12-2

Gasoline Case Study Design of Experiment 12-7

Using Constraints . 12-13

Local Designs . 12-17

Optimal Designs . 12-20

Gasoline Case Study . 12-23

Point-by-point Modeling for a Diesel Engine 12-31

x Contents

Introduction

The following sections introduce Model-Based Calibration Toolbox software.

• “Model-Based Calibration Toolbox Product Description” on page 1-2
• “What Is Model-Based Calibration?” on page 1-3

1

Model-Based Calibration Toolbox Product Description
Model and calibrate engines

Model-Based Calibration Toolbox provides apps and design tools for optimally calibrating
complex engines and powertrain subsystems. You can define optimal test plans,
automatically fit statistical models, and generate calibrations and lookup tables for
complex high-degree-of-freedom engines that would otherwise require exhaustive testing
using traditional methods. Calibrations can be optimized at individual operating points or
over drive cycles to identify the optimal balance of engine fuel economy, performance,
and emissions. Using apps or MATLAB® functions, you can automate the calibration
process for similar engine types.

Models created with Model-Based Calibration Toolbox can be exported to Simulink® to
support control design, hardware-in-the-loop testing, and powertrain simulation activities
across the powertrain design team. Calibration tables can be exported to ETAS INCA and
ATI Vision.

Key Features
• Apps that support the entire workflow: designing experiments, fitting statistical

models to engine data, and producing optimal calibrations
• Design-of-Experiments methodology for reducing testing time through classical, space-
filling, and optimal design techniques

• Accurate engine modeling with data fitting techniques including Gaussian process,
radial basis function, and linear regression modeling

• Boundary modeling to keep optimization results within the engine operating envelope
• Generation of lookup tables from optimizations over drive cycles, models, or test data
• Export of performance-optimized models to Simulink for use in simulation and HIL

testing
• Lookup table import and export to ETAS INCA and ATI Vision

1 Introduction

1-2

What Is Model-Based Calibration?

High accuracy engine models are a key component for reducing calibration effort and
engine development time.

The time spent calibrating an engine control unit has been increasing, due to new control
actuators. The new actuators give the potential for increased performance, reduced
emissions, and improved fuel consumption. It is necessary to apply advanced modeling
and optimization techniques to achieve the full benefits available from the addition of new
actuators. Advanced modeling techniques offer increased understanding of the complex,
nonlinear engine responses. High accuracy models can be used throughout the design
process, including the calibration of base maps with the optimal settings for the control
parameters, determined by constrained optimizations.

The toolbox has two main user interfaces for model-based calibration workflows:

• Model Browser for design of experiment and statistical modeling
• CAGE Browser for analytical calibration

The Model Browser part of the toolbox is a powerful tool for experimental design and
statistical modeling. The models you build with the Model Browser can be imported into
the CAGE Browser part of the toolbox to produce optimized calibration tables.

 What Is Model-Based Calibration?

1-3

Designs and Modeling in the Model Browser
The Model Browser is a flexible, powerful, intuitive graphical interface for building and
evaluating experimental designs and statistical models:

• Design of experiment tools can drastically reduce expensive data collection time.
• You can create and evaluate optimal, space-filling, and classical designs, and

constraints can be designed or imported.
• Hierarchical statistical models can capture the nature of variability inherent in engine

data, accounting for variation both within and between tests.
• The Model Browser has powerful, flexible tools for building, comparing, and

evaluating statistical models and experimental designs.
• There is an extensive library of prebuilt model types and the capability to build user-
defined models.

• You can export models to CAGE or to MATLAB or Simulink software.

Starting the Model Browser

To start the application, type

mbcmodel

at the MATLAB command prompt.

Calibration Generation in CAGE
CAGE (CAlibration GEneration) is an easy-to-use graphical interface for calibrating
lookup tables for your electronic control unit (ECU).

As engines get more complicated, and models of engine behavior more intricate, it is
increasingly difficult to rely on intuition alone to calibrate lookup tables. CAGE provides
analytical methods for calibrating lookup tables.

CAGE uses models of the engine control subsystems to calibrate lookup tables. With
CAGE, you fill and optimize lookup tables in existing ECU software using Model Browser
models. From these models, CAGE builds steady-state ECU calibrations.

CAGE also compares lookup tables directly to experimental data for validation.

1 Introduction

1-4

Starting the CAGE Browser

To start the application, type

cage

at the MATLAB command prompt.

 What Is Model-Based Calibration?

1-5

Gasoline Engine Calibration

• “Gasoline Case Study Overview” on page 2-2
• “Design of Experiment” on page 2-5
• “Empirical Engine Modeling” on page 2-15
• “Optimization” on page 2-20

2

Gasoline Case Study Overview
In this section...
“Gasoline Calibration Problem Definition” on page 2-2
“Case Study Example Files” on page 2-3

Gasoline Calibration Problem Definition
This case study demonstrates how to systematically develop a set of optimal steady-state
engine calibration tables using the Model-Based Calibration Toolbox.

The engine to calibrate is a direct-injected 1.5L spark ignition turbocharged engine with
dual cam-phasers and turbocharger wastegate.

The aim of the calibration is to maximize torque at specific speed/load values across the
engine's operating range, and meet these constraints:

• Limit knock
• Limit residual fraction
• Limit exhaust temperature
• Limit calibration table gradients for smoothness.

The analysis must produce optimal engine calibration tables in speed and load for:

• Spark advance ignition timing (SA)
• Throttle position % (TPP)
• Turbo wastegate area % (WAP)
• Air/Fuel Ratio (Lambda: LAM)
• Intake cam phase (ICP)
• Exhaust cam phase (ECP)
• Torque (TQ)
• Brake-specific fuel consumption (BSFC)
• Boost (MAP)
• Exhaust temperature (TEXH)

2 Gasoline Engine Calibration

2-2

This case study illustrates the model-based calibration process.

Case Study Example Files
The following sections guide you through opening example files to view each stage of the
model-based calibration process. You can examine:

1 Designs, constraints, boundary model, and collected data, in topic “Design of
Experiment” on page 2-5.

 Gasoline Case Study Overview

2-3

2 Finished statistical models, in topic “Empirical Engine Modeling” on page 2-15.
3 Optimization setup and results, and filled calibration tables, in topic “Optimization”

on page 2-20.

Use these example files to understand how to set up systematic calibrations for similar
problems. For next steps, see “Design of Experiment” on page 2-5.

Tip Learn how MathWorks® Consulting helps customers develop engine calibrations that
optimally balance engine performance, fuel economy, and emissions requirements: see
Optimal Engine Calibration.

2 Gasoline Engine Calibration

2-4

https://www.mathworks.com/services/consulting/proven-solutions/optimal-engine-calibration.html

Design of Experiment

Context
This topic describes design of experiments for the gasoline one-stage case study. To view
the high-level workflow, see “Gasoline Case Study Overview” on page 2-2.

Benefits of Design of Experiment
You use design of experiment to efficiently collect engine data. Testing time (on a dyno
cell, or as in this case, using high-fidelity simulation) is expensive, and the savings in time
and money can be considerable when a careful experimental design takes only the most
useful data. Dramatically reducing test time is increasingly important as the number of
controllable variables in more complex engines is growing. With increasing engine
complexity, the test time increases exponentially.

Power Envelope Survey Testing
The first stage to solve this calibration problem is to determine the boundaries of the
feasible system settings. You need to generate the power envelope to constrain the design
points. To do this, data was collected using simulation across a range of speed and torque.
The initial survey determined boundaries that produce:

• Acceptable exhaust temperature (not too high to burn piston crowns)
• Achievable torque production
• Acceptable BSFC (not too high)
• Avoids knock

The envelope must include the idle region of low torque and speed, where the cams must
be parked. The cam timings are set to zero in the idle design.

The initial survey design and test data provide information about the engine operating
envelope. This information was used to create constraints for the final design, to collect
detailed data about the engine behavior within those boundaries. You can then use this
data to create response models for all the responses you need in order to create an
optimal calibration for this engine.

 Design of Experiment

2-5

The final design used 238 points for this engine with 4 inputs: speed, load, intake and
exhaust cam. You can view the constraints defining the operating envelope by following
the steps below.

Create Designs and Collect Data
You can use a space-filling design to maximize coverage of the factors' ranges as quickly
as possible, to understand the operating envelope.

To create a design, you need to first specify the model inputs. Open the example file to
see how to define your test plan.

1 Open MATLAB. On the Apps tab, in the Automotive group, click MBC Model
Fitting.

2 In the Model Browser home page, in the Case Studies list, select Dual CAM
gasoline engine with spark optimized during testing. Alternatively, select File >
Open Project and browse to the example file gasolineOneStage.mat, found in
matlab\toolbox\mbc\mbctraining.

3 To view how to define your test plan design inputs, in the All Models tree, click the
top project node, gasolineOneStage. In the Common Tasks pane, click Design
experiment. In the New Test Plan dialog box, observe the inputs pane, where you
can change the number of model inputs and specify the input symbols, signals and
ranges. This example project already has inputs defined, so click Cancel.

4 Click the first test plan node in the All Models tree, gasolineOneStageDoE. The
test plan view appears.

5 Observe the inputs listed on the test plan diagram. Double-click the Inputs block to
view the ranges and names (symbols) for variables in the Input Factor Set Up dialog
box. The design inputs are torque, speed, intake cam, and exhaust cam. The
dynamometer test setup is in speed/torque and so the design is in speed/torque.

Close the dialog box by clicking Cancel.
6 After setting up inputs, you can create designs. In the Common Tasks pane, click

Design experiment.

The Design Editor opens. Here, you can see how these designs are built.
7 Click the first design in the tree, gasolineOneStageIdle. If you do not see a 2D

plot, select View > Current View > 2D Design Projection. Then select each design
in the tree in turn.

2 Gasoline Engine Calibration

2-6

• The first design in the tree, gasolineOneStageIdle, concentrates points in the
idle area with cams parked. It uses the Sobol Sequence space-filling design type
to maximize coverage. To park the cams, after creating the idle region space-
filling design, the cam phaser positions are set to park position (0,0).

• The second design, gasolineOneStageNonIdle, is another Sobol Sequence
space-filling design to span the non-idle engine operating envelope.

 Design of Experiment

2-7

• The final design is called gasolineOneStageMerged because it contains the
other two merged designs to cover the whole envelope.

2 Gasoline Engine Calibration

2-8

8 To see how the constraints are set up, select Edit > Constraints.
9 In the Constraints Manager dialog box, select each torque constraint in turn and click

Edit. Observe the maximum and minimum torque constraints define the upper and
lower boundary of the feasible operating envelope. These constraints were developed
prior to this design in initial wide-open throttle and closed-throttle engine
performance testing.

 Design of Experiment

2-9

2 Gasoline Engine Calibration

2-10

Observe that you can define areas to exclude by dragging points, typing in the edit
boxes, or using the Table Editor tab.

To leave the constraint unchanged, click Cancel.
10 Observe the Properties of the selected gasolineOneStageMerged design under

the tree, listing 2 constraints, and 238 points.
11 To experiment with a new design and avoid editing the prior designs, select the root

Designs node and select File > New Design.
12 Add the constraints by selecting Edit > Constraints. In the Constraints Manager

dialog box, click Import. Select the torque max and min constraints from the merged
design and click OK. In the following dialogs, click OK to return to the Design Editor.

13 See how to construct a similar constrained space-filling design by selecting Design >
Space Filling > Design Browser, or click the space-filling design toolbar button.

 Design of Experiment

2-11

14 In the Space-Filling Design Browser, observe the design type is Sobol Sequence,
and specify a Number of points. View the preview of design points. Click OK.

15 Click gasolineOneStageMerged. This design style is Custom because the points
are rounded, using Edit > Round Factor. You might also sort design points to make
data collection easier on a dyno. To preserve the space-filling sequence in case you
want to add more points later, you can copy a design before rounding or sorting.

gasolineOneStageMerged is the final design used to collect data. To make it easier
to collect the data, the points are rounded as follows:

• Intake and exhaust cam timings are rounded to 1 degree (2% of range)
• Speed is rounded to 50 RPM (1% of range)
• Torque is rounded to 5 Nm (3% of range)

You can export designs or copy and paste design points into other files to proceed to
data collection.

2 Gasoline Engine Calibration

2-12

16 Close the Design Editor.

The final gasolineOneStageMerged design was used to collect data from the GT-Power
model with the Simulink and Simscape™ test harness. The example Model Browser
project file gasolineOneStage.mat in the mbctraining folder contains this data,
imported to the Model Browser after the data collection.

Data Collection and Physical Modeling
The toolbox provides the data in the projects for you to explore this calibration example.

MathWorks collected the data using simulation tools. Control and simulation models were
constructed using a Simulink and Stateflow® test harness. Constrained experimental
designs were constructed using Model-Based Calibration Toolbox. The points specified in
the design were measured using the GT-Power engine simulation tool from Gamma
Technologies (see https://www.gtisoft.com). The engine to calibrate is a direct-injected
1.5L spark ignition turbocharged engine with dual cam-phasers and turbocharger
wastegate. This model is part of a GT-POWER engine library from Gamma Technologies.

To collect the data, Simulink and Stateflow controlled the GT-Power engine model to the
desired Design of Experiments points.

Note Simulation time was reduced from days to minutes using Parallel Computing
Toolbox™.

This simulation of 238 design points took 20 minutes to run in parallel on multiple
machines in the cloud. Running on a single core, the same simulation takes 3 days.
Parallel Computing Toolbox distributed the work to the 225 cores on a cloud computing
cluster and showed that this problem scales linearly as you add workers.

The data was used in the next step of model-based-calibration, to create statistical
models.

 Design of Experiment

2-13

https://www.gtisoft.com

For next steps, see “Empirical Engine Modeling” on page 2-15.

2 Gasoline Engine Calibration

2-14

Empirical Engine Modeling
After designing the experiments and collecting the data, you can fit statistical models to
the data. Use the toolbox to generate accurate, fast-running models from the measured
engine data.

The dynamometer test setup is in speed/torque and so the design is in speed/torque. The
model is in speed/load because the production engine controller implementation uses load
(derived from air flow) instead of torque tables. The controller uses load because airflow
sensors are presently less expensive in mass production than torque meters.

Examine Response Models
1 Open MATLAB. On the Apps tab, in the Automotive group, click MBC Model

Fitting.

In the Model Browser home page, in the Case Studies list, open Dual CAM
gasoline engine with spark optimized during testing.

2 In the gasolineOneStage.mat project, click the second test plan node in the All
Models tree, gasolineOneStageModels.

3 To assess high-level model trends, at the test plan node select the Response Models
tab. After you fit models, the view at the test plan node displays the Response
Models tab by default. View the cross-section plots of all the response models.

 Empirical Engine Modeling

2-15

4 To view each response model in detail, expand gasolineOneStageModels test plan
node in the All Models tree. Select the first response node under the test plan node,
BSFC.

2 Gasoline Engine Calibration

2-16

5 Examine the Response Surface plot and the Diagnostic Statistics plot.

 Empirical Engine Modeling

2-17

6 Examine the other responses in the All Models tree.

2 Gasoline Engine Calibration

2-18

For details on using the plots and statistics to analyze models, see “Assess High-Level
Model Trends” and “Assess One-Stage Models”.

Examine the Test Plan
Examine the model setup.

1 At the gasolineOneStageModels test plan node, change to the test plan view if
necessary by clicking the Test Plan tab. The Model Browser remembers selected
views.

2 Observe the inputs and response model outputs listed on the test plan diagram.
3 Double-click the Inputs block to view the ranges and names (symbols) for variables

on the Input Factor Set Up dialog box.
4 Double-click the Model block to view that the model class is the default for one-stage

models, a Gaussian Process Model. When you use the Fit models button in the
Common Tasks pane, and select a One-stage template, the toolbox sets the model
type to a Gaussian Process Model.

For details on setting up one-stage models, see “Fit a One-Stage Model”.
5 Click Cancel to close the Model Setup dialog box without altering your example

models.

For next steps, see “Optimization” on page 2-20.

 Empirical Engine Modeling

2-19

Optimization

Optimization Overview
After creating statistical models to fit the data, you can use them in optimizations. You
can use the accurate statistical engine model to replace the high-fidelity simulation and
run much faster, enabling optimization to generate calibrations in feasible times. You use
the statistical models to find the optimal configurations of the engine that meet the
constraints.

The statistical models described in “Empirical Engine Modeling” on page 2-15 were used
in the next step of model-based-calibration, to create optimized calibration tables.

The aim of the calibration is to maximize torque at specific speed/load values across the
engine's operating range, and meet these constraints:

• Limit knock (KIT1)
• Limit residual fraction
• Limit exhaust temperature
• Limit calibration table gradients for smoothness.

Turbocharger speed constraints are implicitly included in the boundary model which
models the envelope.

The analysis must produce optimal engine calibration tables in speed and load for:

• Spark advance ignition timing (SA)
• Throttle position % (TPP)
• Turbo wastegate area % (WAP)

2 Gasoline Engine Calibration

2-20

• Air/Fuel Ratio (Lambda: LAM)
• Intake cam phase (ICP)
• Exhaust cam phase (ECP)
• Torque (TQ)
• Brake-specific fuel consumption (BSFC)
• Boost (MAP)
• Exhaust temperature (TEXH)

View Optimization Results
1 Open MATLAB. On the Apps tab, in the Automotive group, click MBC

Optimization.
2 In the CAGE Browser home page, in the Case Studies list, open Dual CAM

gasoline engine with spark optimized during testing. Alternatively, select File >
Open Project and browse to the example file gasolineOneStage.cag, found in
matlab\toolbox\mbc\mbctraining.

3 In the Processes pane, click Optimization. Observe two optimizations,
Torque_Optimization and Sum_ Torque_Optimization.

Why are there two optimizations? To complete the calibration, you need to start with
a point optimization to determine optimal values for the cam timings. You use the
results of this point optimization to set up a sum optimization to optimize over the
drive cycle and meet gradient constraints to keep the tables smooth.

4 In the Optimization pane, ensure Torque_Optimization is selected. In the
Objectives pane, observe the description: maximize Torque as a function of ECP, ICP,
LOAD and Speed.

5 In the Constraints pane, observe the constraints: the boundary model of Torque,
knock, residual fraction, speed and exhaust temperature. If you want to see how
these are set up, double-click a constraint and view settings in the Edit Constraint
dialog box.

6 In the Optimization Point Set pane, observe the variable values defining the points at
which to run the optimization.

7 To view the optimization results, in the Optimization pane expand the
Torque_Optimization node and select Torque_Optimization_Output.

 Optimization

2-21

2 Gasoline Engine Calibration

2-22

To learn about analyzing optimization results, see “Choosing Acceptable Solutions”.
8 In the Optimization pane, select Sum_Torque_Optimization and compare with the

previous point optimization setup.

Set Up Optimization
Learn how to set up this optimization.

1 To perform an optimization, you need to import the statistical models created in the
Model Browser. To see how to import models, in CAGE, select File > Import From
Project.

The CAGE Import Tool opens. Here, you can select models to import from a model
browser project file or direct from the Model Browser if it is open. However, the
toolbox provides an example file with the models already imported, so click Close to
close the CAGE Import Tool.

2 To view the models, click Models in the left Data Objects pane.
3 You need tables to fill with the results of your optimizations. To see all the tables,

select the Tables view.
4 To see how to set up these tables, select Tools > Create Tables from Model. The

Create Tables from Model wizard appears.

a Select the model Torque and click Next.
b On the next screen you see the controls for specifying the inputs and size of

tables. Click the Edit breakpoints buttons to see how to set up row and column
values. Click Next.

 Optimization

2-23

c On the next screen you can set limits on table values. To edit, double-click Table
Bounds values.

2 Gasoline Engine Calibration

2-24

Click Cancel to avoid creating new unnecessary tables in your example file.
5 Learn the easiest way to set up an optimization by selecting Tools > Create

Optimization from Model.

a Select the model Torque and click Next.
b Observe that the default settings will create a point optimization to minimize

Torque, using 4 free variables, and constrained by a model boundary constraint.
To create this example optimization, edit the settings to maximize Torque, use
the BSFC table grid as a data source, and use only ECP and ICP as free
variables. Click Finish to create the optimization.

 Optimization

2-25

6 Compare your new optimization with the example Torque_Optimization. To finish
the setup you need to add or import the rest of the constraints. In this case, select
Optimization > Constraints > Import Constraints. Import the constraints from
the Torque_Optimization optimization.

7 To learn how to set up the sum optimization, from the
Torque_Optimization_Output node, select Solution > Create Sum
Optimization. The toolbox creates a sum optimization for you.

8 Compare your new optimization with the example sum optimization,
Sum_Torque_Optimization. The example shows you need to add the table
smoothness constraints to complete the calibration. To see how to set up table
gradient constraints, double-click the constraint GradECP.

2 Gasoline Engine Calibration

2-26

To learn more about setting up optimizations and constraints, see:

• “Create Tables from a Model”
• “Creating Optimizations from Models”
• “Edit Objectives and Constraints”
• “Create Sum Optimization from Point Optimization Output”

.

Filling Tables From Optimization Results
CAGE remembers table filling settings. To view how the example tables are filled:

1 Expand the example sum optimization node Sum_Torque_Optimization and select
the Sum_Torque_Optimization_Output node.

2 Select Solution > Fill Tables to open the Table Filling from Optimization Results
Wizard.

3 On the first screen, observe all the tables in the CAGE tables to be filled list. Note
that the LAM (lambda) table is not filled from the optimization results, because this
table was filled from the test data. Click Next.

4 On the second screen, observe all the tables are matched up with optimization results
to fill them with. Click Next.

5 On the third screen, observe the table filling options. You can either click Finish to
fill all the tables, or Cancel to leave the tables untouched. The example tables are
already filled with these settings.

The following plot shows similar calibration results for the ICP table. Observe that the
idle region has locked cells to keep the cams parked at 0. If you want to lock values like
this, to get smooth filled tables, lock the cells before filling from optimization results.

 Optimization

2-27

The following plot shows similar calibration results for the ECP table.

2 Gasoline Engine Calibration

2-28

You can examine all the filled tables in the example project.

To learn more about analyzing and using optimization results, see “Optimization
Analysis”.

 Optimization

2-29

See Also

Related Examples
• “Create Tables from a Model”
• “Creating Optimizations from Models”
• “Edit Objectives and Constraints”
• “Choosing Acceptable Solutions”
• “Create Sum Optimization from Point Optimization Output”
• “Filling Tables from Optimization Results”

2 Gasoline Engine Calibration

2-30

Design and Modeling Scripts

• “Introduction to the Command-Line Interface” on page 3-2
• “Automate Design and Modeling With Scripts” on page 3-3
• “Understanding Model Structure for Scripting” on page 3-7
• “How the Model Tree Relates to Command-Line Objects” on page 3-11

3

Introduction to the Command-Line Interface
The Model-Based Calibration Toolbox product is a software tool for modeling and
calibrating powertrain systems. The command-line interface to the Model-Based
Calibration Toolbox enables the design of experiments and modeling tools available in the
toolbox to be accessible from the test bed.

You can use these commands to assemble your specific engine calibration processes into
an easy to use script or graphical interface. Calibration technicians and engineers can use
the custom interface without the need for extensive training. This system enables:

• Transfer of knowledge from the research and development engineers into the
production environment

• Faster calibration
• Improved calibration quality
• Improved system understanding
• Reduced development time

3 Design and Modeling Scripts

3-2

Automate Design and Modeling With Scripts
In this section...
“Processes You Can Automate” on page 3-3
“Engine Modeling Scripts” on page 3-5

Processes You Can Automate
You can use these command-line functions to automate engine modeling processes.

Goal Function
Create or load a project • CreateProject

• Load
Create a new test plan for the
project using a template

CreateTestplan

Create designs that define data
points to collect on the test bed

CreateDesign

Work with classical, space-filling or
optimal designs

• CreateConstraint
• CreateCandidateSet
• Generate
• FixPoints
• Augment

Create or load a data object for the
project and make it editable

• CreateData
• BeginEdit

Load data from a file or the
workspace

• ImportFromFile
• ImportFromMBCDataStructure

Work with data Examine Value
Modify • AddFilter

• AddTestFilter
Add variables AddVariable
Add Append

 Automate Design and Modeling With Scripts

3-3

Goal Function
Group • DefineTestGroups

• DefineNumberOfRecordsPerTest
Export ExportToMBCDataStructure

Save your changes to the data, or
discard them

• CommitEdit
• RollbackEdit

Designate which project data object
to use for modeling in your test
plan

AttachData

Create and evaluate boundary
models, either in a project or
standalone

“Boundary Model Scripting” on page 3-9

Create models for the data; these
can be one- or two-stage models
and can include datum models

CreateResponse

Work with your
models

Examine input
data and
response data

• DoubleInputData
• DoubleResponseData

Examine
predicted values
at specified
inputs

• PredictedValue
• PredictedValueForTest

Examine
Predicted Error
Variance (PEV) at
specified inputs

• PEV
• PEVForTest

Examine and
remove outliers

• OutlierIndices
• OutlierIndicesForTest
• RemoveOutliers
• RemoveOutliersForTest
• RestoreData

3 Design and Modeling Scripts

3-4

Goal Function
Create a
selection of
alternative
models

CreateAlternativeModels

Choose the best
model by using
the diagnostic
statistics

• AlternativeModelStatistics
• DiagnosticStatistics
• SummaryStatistics

Extract a model
object from any
response object

• Model Object
• fit
• CreateModel
• ModelSetup
• Type (for models)
• Properties (for models)
• CreateAlgorithm
• StepwiseRegression
• Jacobian
• ParameterStatistics
• UpdateResponse

For two-stage test plans, once you
are satisfied with the fit of the local
and response feature models,
calculate the two-stage model

MakeHierarchicalResponse

Export models to MATLAB or
Simulink

Export

Engine Modeling Scripts
For command-line script examples, see Model-Based Calibration Toolbox Examples. Run
the scripts to learn about:

• Loading and Modifying Data
• Designing experiments and constraining designs

 Automate Design and Modeling With Scripts

3-5

matlab:demo toolbox model-based

• Gasoline engine modeling script to automatically generate a project for the gasoline
case study, including:

• Grouping and filtering data
• Boundary modeling
• Response modeling
• Removing outliers and copying outlier selections
• Creating alternative models and selecting the best based on statistical results

• Point-by-point diesel engine modeling to automatically generate a project for the diesel
case study, including:

• Defining engine operating points
• Creating designs for each operating point
• Augmenting designs to collect more data
• Building a point-by-point boundary model
• Create response models using the local multiple model type

See Also

More About
• “Automation Scripting”

3 Design and Modeling Scripts

3-6

Understanding Model Structure for Scripting
In this section...
“Projects and Test Plans for Model Scripting” on page 3-7
“Response Model Scripting” on page 3-7
“Boundary Model Scripting” on page 3-9

Projects and Test Plans for Model Scripting
To use the Model Browser in the Model-Based Calibration Toolbox product, you must
understand the structure and functions of the model tree to navigate the views. To use the
command-line version of the toolbox, you must understand the same structure and
functions, that is, how projects, test plans, and models fit together. The following sections
describe the relationship between the different models that you can construct. The
diagrams in the following section, “How the Model Tree Relates to Command-Line
Objects” on page 3-11, illustrate these relationships.

• Projects can have one or more test plans.
• Projects can have one or more data objects.

• Test plans have no more than one data object.
• Test plans have response objects.

• If a one-stage test plan, these are simply known as responses.
• If two-stage test plan, these are hierarchical responses.

• Test plans have boundary tree objects.

Response Model Scripting
A response is a model fitted to some data. These are the types of responses:

• Hierarchical Response (Level 0)

A hierarchical response (also known as a two-stage response) models a
ResponseSignalName using a local response and one or more response features.

A hierarchical response has one or more different local responses (accessible via the
property LocalResponses) that provide different possible models of the

 Understanding Model Structure for Scripting

3-7

ResponseSignalName. One of these must be chosen as the best, and that will then be
the local response used subsequently. The response features of each of the local
responses are available directly from those local response objects.

• Local Response (Level 1)

The local response consists of models of the ResponseSignalName as a function of
the local input factors. The local input factors are accessible via the
InputSignalNames property.

A local response has one or more response features (accessible via the property
ResponseFeatures) containing the models fitted to those response features of the
local model.

• Response (Level 1 or 2)

• For two-stage test plans, response objects model the response features of local
responses (ResponseSignalName corresponds to the name of the response
feature). In this case, the response has a level value of 2.

• For one-stage test plans, response objects simply model the
ResponseSignalName as a function of the input factors. In this case, the response
will have a level value of 1.

All responses can have zero or more alternative responses (accessible via the property
AlternativeResponses) that provide different possible models of the
ResponseSignalName. These all retain the same level as the response for which they
are an alternative. One of these must be chosen as the best and that will then be the
response used subsequently.

See the illustrations in the following section, “How the Model Tree Relates to Command-
Line Objects” on page 3-11, for examples of different responses and how they relate to
each other.

Note that each response contains a model object (mbcmodel.model) that can be
extracted and manipulated independently of the project. You can change the model type
and settings, fit to new data, examine coefficients, regression matrices and predicted
values, and use stepwise functions to include or remove terms. You can change model
type, properties and fit algorithm settings. To learn about what you do with a model
object, see Model Object. If you change the model, you must use UpdateResponse to
replace the new model type in the response object in the project. When you use
UpdateResponse the new model is fitted to the response data. See UpdateResponse.

3 Design and Modeling Scripts

3-8

Boundary Model Scripting
You can create and evaluate boundary models either in a project or standalone. You can
combine boundary models in the same way as when using the Boundary Editor GUI. You
can use boundary models as design constraints.

In a project, the test plan has a Boundary property that can contain an
mbcboundary.Tree object.

BoundaryTree = mbcmodel.testplan.Boundary

The BoundaryTree is a container for all the boundary models you create. The tree is
empty until you create boundaries, and if you change the testplan data the toolbox deletes
the boundaries.

You can fit boundary models in mbcmodel projects using the boundary tree class
mbcboundary.Tree, or you can fit boundary models directly to data.

To create a boundary model outside of a project, you can either:

• Use the CreateBoundary package function:

B = mbcboundary.CreateBoundary(Type,Inputs)

• Use the fit method to create and fit a boundary to some data X:

B = mbcboundary.Fit(X,Type)

To create a boundary model within a project, use the CreateBoundary method of the
boundary tree:

B = CreateBoundary(Tree,Type)

This creates a new boundary model, B, from the mbcboundary.Tree object, Tree. The
test plan inputs are used to define the boundary model inputs. The new boundary model is
not added to the tree, you must call Add.

To create a new boundary model from an existing boundary model, you can use the
CreateBoundary method of all boundary model types:

B = CreateBoundary(B,Type)

You can combine boundary models by using the InBest property of the boundary tree.
This corresponds to combining boundary models in best in the Boundary Editor GUI, as

 Understanding Model Structure for Scripting

3-9

described in “Combining Best Boundary Models” in the Model Browser documentation.
You can also combine boundary models with logical operators, for use as design
constraints or outside projects.

You can change the ActiveInputs, Evaluate, and use as a designconstraint.

3 Design and Modeling Scripts

3-10

How the Model Tree Relates to Command-Line Objects
The tree in the Model Browser displays the hierarchical structure of models. This
structure must be understood to use the command-line interface. The following examples
illustrate the relationship between projects, test plans and responses in one-stage and
two-stage models.

The following is an example of a two-stage model tree.

1. Project

2. Test Plan

3. Hierarchical Response

4. Local Response

5. Responses

The elements of the tree correspond to the following objects in the command-line
interface:

1 Project
2 Test Plan
3 Hierarchical Response
4 Local Response
5 Responses

The following example illustrates a project containing a one-stage test plan; in the
command-line interface this corresponds to a project, one-stage test plan, and a response
model.

 How the Model Tree Relates to Command-Line Objects

3-11

Project

One-stage
 test plan

Response

Hierarchical responses can have multiple local responses, as shown in the following
example from the Model Browser. In the command-line interface these are accessible via
the property LocalResponses for a hierarchical response object
(mbcmodel.hierarchicalresponse). In this example, the local responses are PS22,
PS32, and POLY2.

Only one of these local responses can be chosen as best (in this example, PS22, indicated
by the blue icon) and used to construct the hierarchical response, together with the
associated response features of the local response. Each local response object has a set of
responses, accessible by the property ResponseFeatures(Local Response).

3 Design and Modeling Scripts

3-12

Local responses

Test plan

Responses

Hierarchical
response

Responses can have zero or more alternative responses, as shown in the following model
tree. You call the method CreateAlternativeModels on the command line to do the
same.

 How the Model Tree Relates to Command-Line Objects

3-13

Local responses

Test plan

Responses

Hierarchical
response

Project

Alternative
responses
for knot

In this example, the alternative responses for the knot response are accessible via the
property AlternativeResponses. You can create alternative responses for any
response (including all one-stage responses).

You can use model templates to try alternative model types for several responses. The
following example shows the results of using a model template for four alternative
responses (Linear-RBF, RBF-multiquadric, Cubic, and Quadratic). The model
template has been used to create alternative responses for the responses knot and max.
You can call the method CreateAlternativeModels to do this in the command-line
interface.

3 Design and Modeling Scripts

3-14

Local response

Responses

Alternative
responses
for knot

Alternative
responses
for max

One of the alternative responses must be chosen as best for each response (call the
method ChooseAsBest). In this example, when Linear-RBF is chosen as best from the
alternatives for the knot response, then it is copied to knot.

 How the Model Tree Relates to Command-Line Objects

3-15

Multi-Injection Diesel Calibration

• “Multi-Injection Diesel Calibration Workflow” on page 4-2
• “Design of Experiment” on page 4-22
• “Statistical Modeling” on page 4-35
• “Optimization” on page 4-41

4

Multi-Injection Diesel Calibration Workflow
In this section...
“Multi-Injection Diesel Problem Definition” on page 4-2
“Engine Calibration Workflow” on page 4-7
“Air-System Survey Testing” on page 4-8
“Multi-Injection Testing” on page 4-9
“Data Collection and Physical Modeling” on page 4-10
“Statistical Modeling” on page 4-11
“Optimization Using Statistical Models” on page 4-12
“Case Study Example Files” on page 4-20

Multi-Injection Diesel Problem Definition
This case study shows how to systematically develop a set of optimal steady-state engine
calibration tables using Model-Based Calibration Toolbox.

The engine to be calibrated is a 3.1L multi-injection combustion ignition engine with
common rail, variable-geometry turbocharger (VGT), and cooled exhaust gas recirculation
(EGR).

The aim of the calibration is to minimize brake-specific fuel consumption (BSFC) at
specific speed/load operating points across the engine’s operating range, and meet these
constraints:

• Limit total NOx emissions.
• Limit maximum turbocharger speed.
• Limit calibration table gradients for smoothness.

The analysis must produce optimal calibration tables in speed and torque for:

• Best main start of injection timing
• Best total injected fuel mass per cylinder per cycle
• Best pilot injection timing relative to main timing
• Best pilot injection fuel mass fraction of total injection mass

4 Multi-Injection Diesel Calibration

4-2

• Best exhaust gas recirculation (EGR) position
• Best variable geometry turbocharger (VGT) vane position
• Best fuel rail pressure relative to nominal pressure vs. engine speed

These sections explain the objectives of selecting best values for these calibration tables
and the effects of these control variables on the engine:

• “Select Main Injection Timing for Efficiency” on page 4-3
• “Select Pilot Injection Timing to Control Noise” on page 4-4
• “Select Main Fuel Mass for Efficiency and Emissions” on page 4-5
• “Select Fuel Pressure for Efficiency and Emissions” on page 4-5
• “Select the Turbocharger Position to Control Air-Charge and EGR” on page 4-6
• “Select the EGR Valve Position to Control Air-Charge and Emissions” on page 4-7

Select Main Injection Timing for Efficiency

You select the injection timing of the main fuel injection to maximize engine efficiency.
You aim to make peak cylinder pressure occur slightly after piston top center. You inject
fuel just before top-center compression, as shown.

 Multi-Injection Diesel Calibration Workflow

4-3

Then you can achieve peak combustion pressure just after top-center expansion.

You also need to adjust injection timing according to speed and other conditions.

• You need to advance (move earlier before piston top center) the start of injection
timing with increasing speed and dilution (exhaust gas recirculation or EGR).

• You need to retard the start of injection timing with increased fresh air intake (load).

Select Pilot Injection Timing to Control Noise

You select the timing of the pilot fuel injection to start combustion early before the larger
main fuel injection. The pilot fuel injection occurs well before top-center compression and
before the main injection.

4 Multi-Injection Diesel Calibration

4-4

You can use pilot fuel injection to control combustion noise, because it affects the
variability in cylinder pressure.

In this example, pilot fuel injection timing is defined as a crank-angle delta offset before
the main injection, and is therefore a relative quantity.

Select Main Fuel Mass for Efficiency and Emissions

The air-fuel ratio (AFR) affects engine efficiency and emissions. A rich AFR causes high
engine-out particulates and low engine-out NOx. You control AFR by changing the main
fuel mass for optimal balance between power and emissions.

The AFR of the combustion mixture is determined by the main fuel injection mass for a
given amount of fresh air. The amount of air results mainly from EGR valve position, VGT
position, intake throttle position, and speed.

Select Fuel Pressure for Efficiency and Emissions

You can use fuel pressure to control fuel droplet size. Reduced fuel droplet size in the
combustion chamber reduces particulates, releases more energy from the fuel, and
achieves more stable combustion. High fuel pressure decreases fuel droplet size to
improve efficiency and emissions.

 Multi-Injection Diesel Calibration Workflow

4-5

At low loads, you can use lower fuel pressure to decrease fuel pump power losses without
much effect on emissions and power efficiency.

In this example, fuel pressure is controlled relative to an engine-speed-dependent base
level via a fuel pressure delta, and is therefore a relative quantity.

Select the Turbocharger Position to Control Air-Charge and EGR

You can use the variable-geometry turbocharger (VGT) position to balance fresh air and
exhaust gas recirculation for optimal NOx control at a given power level.

You can change VGT vane position to increase cylinder fresh air due to the turbocharger
speed increase. With the vanes closed, the turbocharger moves faster (high VGT speed)
and sends a higher load (or boost) of air into the engine. Closing the vanes also increases
exhaust gas recirculation (EGR) due to increased backpressure from the closed vanes.

With the vanes open, VGT speed is low and passes through low load (or boost) to the
engine.

4 Multi-Injection Diesel Calibration

4-6

Select the EGR Valve Position to Control Air-Charge and Emissions

You can use the EGR valve position to control the flow of burned exhaust gases back to
the intake manifold.

Reburning exhaust gases decreases in-cylinder temperature, resulting in a significant
decrease in NOx emissions.

If you select too much EGR for a given amount of injected fuel, then the air-fuel ratio will
be rich, causing increased soot emissions. Therefore, you must balance these competing
objectives.

In engines, timing is everything. Using the EGR valve and all the other control variables,
controlling the engine's air flow is the key to optimizing fuel economy, reducing
emissions, and increasing power density.

Engine Calibration Workflow
The following graphic illustrates the workflow for the model-based calibration process.
The workflow can use a combination of tools: Model-Based Calibration Toolbox, Simulink,
Stateflow, third-party high-fidelity simulation tools, and Hardware-in-the-Loop testing for
fine tuning calibrations on ECUs.

 Multi-Injection Diesel Calibration Workflow

4-7

Air-System Survey Testing
The first step to solve this calibration problem is to determine the boundaries of the
feasible air-system settings. To do this, you create an experimental design and collect
data to determine air-system setting boundaries that allow positive brake torque
production in a feasible AFR range.

4 Multi-Injection Diesel Calibration

4-8

These simplifications were used to conduct the initial study:

• Pilot injection is inactive.
• Main timing is fixed.
• Nominal fuel pressure vs RPM.
• Main fuel mass is moved to match the AFR target.

Fit a boundary model to these design points.

Multi-Injection Testing
After the air-system survey, you have established the boundaries of positive brake torque
air-system settings. Now, you can create an experimental design and collect data to
gather fuel injection effects within those boundaries. You can then use this data to create
response models for all the responses you need to create an optimal calibration for this
engine.

 Multi-Injection Diesel Calibration Workflow

4-9

Data Collection and Physical Modeling
The toolbox provides the data for you to explore this calibration example.

MathWorks collected the data using simulation tools. Control and simulation models were
constructed using Simulink and Stateflow. Constrained experimental designs were
constructed using Model-Based Calibration Toolbox. The points specified in the design
were measured using the GT-Power engine simulation tool from Gamma Technologies (see
https://www.gtisoft.com).

To collect the data, Simulink and Stateflow controlled the torque output of the GT-Power
engine model to the desired Design of Experiments points using total fuel mass. This
graphic shows the virtual dynamometer test model.

4 Multi-Injection Diesel Calibration

4-10

https://www.gtisoft.com

Statistical Modeling
After designing the experiments and collecting the data, you can fit statistical models to
the data. You can use the toolbox to generate accurate, fast-running models from the
measured engine data.

The following graphic shows the models to define in the toolbox to solve this calibration
problem. The graphic shows how the model inputs and output relate to the optimal tables,
optimization operating points, objectives and constraints you need to perform the
optimization and create the calibration.

 Multi-Injection Diesel Calibration Workflow

4-11

Optimization Using Statistical Models
After creating statistical models to fit the data, you can use them in optimizations. You
can use the accurate statistical engine model to replace the high-fidelity simulation and
run much faster, enabling optimizations to generate calibrations.

1 Run an optimization to choose whether to use Pilot Injection at each operating point.
2 Optimize fuel consumption over the drive cycle, while meeting these constraints:

• Constrain total NOx
• Constrain turbocharger speed
• Constrain smoothness of tables

3 Fill lookup tables for all control inputs.

The following plots show a preview of the calibration results.

4 Multi-Injection Diesel Calibration

4-12

.

Pilot Mode Table
This graphic shows the plot of the table to select the active or inactive pilot mode
depending on the speed and commanded torque

You need to fill calibration tables for each control variable described in “Multi-Injection
Diesel Problem Definition” on page 4-2, in both pilot modes, active and inactive.

Following are all the pilot active tables.

 Multi-Injection Diesel Calibration Workflow

4-13

Main Start of Injection (SOI) Timing Table

4 Multi-Injection Diesel Calibration

4-14

Total Injected Fuel Mass Table

 Multi-Injection Diesel Calibration Workflow

4-15

Fuel Pressure Delta Table

4 Multi-Injection Diesel Calibration

4-16

Exhaust Gas Recirculation (EGR) Valve Position Table

 Multi-Injection Diesel Calibration Workflow

4-17

Variable-Geometry Turbo (VGT) Position Table

4 Multi-Injection Diesel Calibration

4-18

Pilot Injection Timing (Pilot SOI Delta) Table

 Multi-Injection Diesel Calibration Workflow

4-19

Pilot Fuel Mass Fraction Table

Case Study Example Files
The following sections guide you through opening example files to view each stage of the
model-based calibration process. You can examine:

1 Designs, constraints, boundary model, and collected data, in topic “Design of
Experiment” on page 4-22.

2 Finished statistical models, in topic “Statistical Modeling” on page 4-35.
3 Optimization setup and results, and filled calibration tables, in topic “Optimization”

on page 4-41.

Use these example files to understand how to set up systematic calibrations for similar
problems. For next steps, see “Design of Experiment” on page 4-22.

4 Multi-Injection Diesel Calibration

4-20

Tip Learn how MathWorks Consulting helps customers develop engine calibrations that
optimally balance engine performance, fuel economy, and emissions requirements: see
Optimal Engine Calibration.

 Multi-Injection Diesel Calibration Workflow

4-21

https://www.mathworks.com/services/consulting/proven-solutions/optimal-engine-calibration.html

Design of Experiment

Benefits of Design of Experiment
You use design of experiment to efficiently collect engine data. Testing time (on a dyno
cell, or as in this case, using high-fidelity simulation) is expensive, and the savings in time
and money can be considerable when a careful experimental design takes only the most
useful data. Dramatically reducing test time is increasingly important as the number of
controllable variables in more complex engines is growing. With increasing engine
complexity, the test time increases exponentially.

Air-System Survey Testing
The first stage to solve this calibration problem is to determine the boundaries of the
feasible air-system settings. To do this, create an experimental design and collect data to
determine air-system setting boundaries that allow positive brake torque production in a
feasible AFR range.

These simplifications were used to conduct the initial study:

• Pilot injection is inactive.
• Main timing is fixed.
• Nominal fuel pressure vs RPM.
• Main fuel mass is moved to match the AFR target.

4 Multi-Injection Diesel Calibration

4-22

The design process follows these steps:

1 Set up variable information for the experiment, to define the ranges and names of the
variables in the design space.

2 Choose an initial model.
3 Create a base design that contains the correct constraints.
4 Create child designs using varying numbers of points and/or methods of construction.
5 Choose the design to run based on the statistics and how many points you can afford

to run.

Create Designs and Collect Data
You can use a space-filling design to maximize coverage of the factors' ranges as quickly
as possible, to understand the operating envelope.

To create a design, you need to first specify the model inputs. Open the example file to
see how to define your test plan.

1 In MATLAB, on the Apps tab, in the Automotive group, click MBC Model Fitting.
2 Select File > Open Project and browse to the example file

CI_MultiInject_AirSurvey.mat, found in matlab\toolbox\mbc
\mbctraining.

3 The Model Browser displays the top project mode in the All Models tree,
CI_Multiinject_AirSurvey.

4 To see how to define your test plan, click Design Experiment. In the new test plan
dialog box, observe the inputs pane, where you can change the number of model
inputs and specify the input symbols, signals and ranges. This example project
already has inputs defined, so click Cancel.

5 Click the first test plan node in the All Models tree, AirSurveyDoE. The test plan
view appears.

 Design of Experiment

4-23

6 Observe the inputs listed on the test plan diagram. Double-click the Inputs block to
view the ranges and names (symbols) for variables in the Input Factor Set Up dialog
box.

4 Multi-Injection Diesel Calibration

4-24

Close the dialog box.
7 After setting up inputs, you can create designs. In the Common Tasks pane, click

Design experiment.

The Design Editor opens. Here, you can see how these designs are built:

• The final Air Survey design is a ~280 point Sobol Sequence design to span the
engine operating space. The Sobol Sequence algorithm generated the space-filling
design points. The final design is called AirSurveyMergedDoE because it
contains two merged designs, one with a constraint and one unconstrained:

• A 232-point design for overall engine operating range called
AirSurveySpaceFill

• A 50-point design low speed/load for an idle region called AirSurveyIdle
8 Select the AirSurveySpaceFill design in the Designs tree, and select View >

Current View > 2D Design Projection.

 Design of Experiment

4-25

9 Select Edit > Constraints to see how the constraints are set up.

4 Multi-Injection Diesel Calibration

4-26

10 In the Constraints Manager dialog box, select a constraint and click Edit. Observe
that you can define areas to exclude by dragging points or typing in the edit boxes.

 Design of Experiment

4-27

Click Cancel to close the Edit Constraint dialog box and leave the constraint
unchanged. Close the Constraints Manager dialog box.

11 Observe the Properties of the selected AirSurveySpaceFill design under the
tree, listing 2 constraints, 232 points, and a Design Style of Sobol Sequence.

12 You can see how to construct a design like this by selecting Design > Space Filling
> Design Browser, or click the space-filling design toolbar button.

a • A dialog box asks what you want to do with the existing design points. Click
OK to replace the points with a new design.

• In the Space-Filling Design Browser, click Generate several times to try
different space-filling points. You can specify the Number of points, and
view previews of design points. Observe the default design type is Sobol
Sequence.

• Click Cancel to close the Space-Filling Design Browser and leave the design
unchanged.

4 Multi-Injection Diesel Calibration

4-28

13 Click the AirSurveyIdle design to observe it is also a Sobol Sequence design,
containing 50 points and no constraints.

14 Click the AirSurveyMergedDoE design to observe it is of type Custom, and contains
282 points and 2 constraints. This design is formed by merging the previous 2
designs. You can find Merge Designs in the File menu.

15 Click AirSurveyMergedDoE_RoundedSorted, the child design of
AirSurveyMergedDoE. This design contains the same points but rounded and
sorted, using Edit > Sort Points and Edit > Round Factor. This is the final design
used to collect data.

16 Close the Design Editor.

The final air survey design was used to collect data from the GT-Power model with the
Simulink and Simscape test harness. The example Model Browser project file
CI_MultiInject_AirSurvey.mat contains this data, imported to the Model Browser
after the air survey. You can also view the data in spreadsheet form in the file
CI_AirSurvey_Data.xlsx in the mbctraining folder.

Fit a Boundary Model to Air Survey Data
You need to fit a boundary model to the data collected at the air survey design points. The
test data from the air survey was used to create a boundary model of the engine
operating range. The example Model Browser project file
CI_MultiInject_AirSurvey.mat contains this boundary model.

1 In the Model Browser, click the second test plan node in the All Models tree,
AirSurveyBoundary.

Compare with the AirSurveyDoE test plan view. For the boundary modeling test
plan,

• Observe an imported data set listed under the Common Tasks pane. The second
test plan has imported the air survey data in order to fit a boundary model to the
data.

• Observe the Inputs are different in the test plan diagram. Instead of the AFRCMD
input in the DoE test plan, there is a SPEED input for boundary modeling. AFRCMD
was used to constrain the design points to collect the air survey data. To model
the boundary before creating the final design, you now need the SPEED input
instead.

 Design of Experiment

4-29

2 In the Model Browser, select TestPlan > Edit Boundary to open the Boundary
Editor.

3 Examine the boundary model by selecting View > Current View > Pairwise
Projections. The plots show the shape across the inputs.

4 Multi-Injection Diesel Calibration

4-30

 Design of Experiment

4-31

Use the Air Survey and Boundary Model to Create the Final
Design
The initial air survey design and test data provide information about the engine operating
envelope, where the feasible AFR range can produce positive brake torque. The resulting
data lets you create a boundary model. You can use the boundary model to create the final
design avoiding infeasible points, and in later steps to guide modeling and constrain
optimizations.

Using the boundary model as a constraint, you can generate the final design to collect
detailed data about fuel injection effects within those boundaries. You can then use this
data to create response models for all the responses you need in order to create an
optimal calibration for this engine.

The final Point-by-Point Multi-Injection design (around 7000 points) was generated using
a MATLAB script together with the Air Survey boundary model.

1 Open the example files CI_PointbyPointDoE.m and
createCIPointbyPointDoEs.m in the mbctraining folder to see the script
commands that build the final design.

The script keeps only points that lie within the boundary model, and continues
generating design points until it reaches the desired number of points. The Sobol
space-filling design type keeps filling in spaces for good coverage of the design space.

After generating design points for each test, the script creates a Model Browser
project with a point-by-point test plan, and attaches the point-by-point designs to the
test plan.

2 Open the project CI_MultiInject_PointbyPoint.mat to view the project created
by the script.

3 Select the second test plan node in the tree, and then click the Test Plan tab. In the
test plan diagram, right-click the Operating Point Selector block, and select Design
Experiment to view the designs created by the script.

4 Multi-Injection Diesel Calibration

4-32

4 In the Design Editor, select Mode Points in the Design tree, and view the 2D Design
Projection.

5 In the Design tree, select Actual Design. Observe that the boundary model
constraint removed points in the corners, so that the actual design points collect data
only in the feasible region determined by the initial air survey.

6 Return to the Model Browser test plan, right-click the Local Model block, and select
Design Experiment.

7 Click test numbers to view the local design points at each operating point. At each
test, the values of SPEED and TQ are fixed and the space-filling design selects points
across the space of the local inputs.

 Design of Experiment

4-33

Multi-Injection Testing
The final design was used to collect data for the following inputs and responses.

The toolbox provides the data files for you to explore this calibration example. You can
view the data in spreadsheet form in the file
CI_MultiInject_PointByPoint_Data.xls, and the data is imported to the Model
Browser project file CI_MultiInject_PointbyPoint.mat.

For details on how the data was collected, see “Data Collection and Physical Modeling” on
page 4-10.

For next steps, see “Statistical Modeling” on page 4-35.

Tip Learn how MathWorks Consulting helps customers develop engine calibrations that
optimally balance engine performance, fuel economy, and emissions requirements: see
Optimal Engine Calibration.

4 Multi-Injection Diesel Calibration

4-34

https://www.mathworks.com/services/consulting/proven-solutions/optimal-engine-calibration.html

Statistical Modeling

Examine the Test Plans for Point-by-Point Models
After designing the experiments and collecting the data, you can fit statistical models to
the data. You can use the toolbox to generate accurate, fast-running models from the
measured engine data.

The following graphic shows the models to define in the toolbox to solve this calibration
problem. The graphic shows how the model inputs and output relate to the optimal tables,
optimization operating points, objectives and constraints you need to perform the
optimization and create the calibration.

The toolbox provides the data for you to explore this calibration example. For details on
how the data was collected, see “Data Collection and Physical Modeling” on page 4-10.

Examine the model setup.

 Statistical Modeling

4-35

1 In MATLAB, on the Apps tab, in the Automotive group, click MBC Model Fitting.
2 In the Model Browser home page, in the Case Studies list, select Multi-injection

diesel tested with pilot injection on and off. Alternatively, select File > Open
Project and browse to the example file CI_MultiInject_PointbyPoint.mat,
found in matlab\toolbox\mbc\mbctraining.

3 The Model Browser remembers views, so change to the test plan view if necessary, by
clicking the PilotInactivePointbyPoint test plan node in the All Models tree.

The Response Models tab shows the cross-section view of the responses. Here you
can assess high-level model trends.

4 Select the Test Plan tab.

4 Multi-Injection Diesel Calibration

4-36

5 Observe the inputs and response model outputs listed on the test plan diagram. This
is a Point-by-Point test plan. The Global Inputs SPEED and TQCMD select the operating
points for each model.

6 Double-click the Inputs blocks to view the ranges and names (symbols) for variables
on the Input Factor Set Up dialog box.

7 Double-click the Local Model block to view that the Point-by-Point Model Setup
dialog. View the list of alternative models to fit at each operating point for a point-by-
point test plan. When you use the Fit models button in the Common Tasks pane,
and select a Point-by-Point template, the toolbox selects this list of models. This
model setup fits four alternative model types at each operating point, and selects the
best model based on the Criteria setting, in this case PRESS RMSE.

 Statistical Modeling

4-37

8 Click Cancel to close the Model Setup dialog box without altering your example
models.

9 Similarly, examine the PilotActivePointbyPoint test plan. This test plan has the
same response models and model type setup, but two more local inputs for the pilot
injection timing and mass, PILOTDELTASOI and PILOTFMF. The data used to fit the
models is also different, with the two additional factors. Observe the Dataset
information under the Common Task pane in the test plan view.

For details on setting up point-by-point models, see “Fit a Point-by-Point Model”.

4 Multi-Injection Diesel Calibration

4-38

Examine Response Models
1 Expand the PilotInactivePointByPoint test plan node in the All Models tree

and select the nodes for each response name, e.g., BSFC.
2 Click through tests to see the model selected as best at each point.

The toolbox tries to select the best model for each operating point based on the
selected statistical criteria. However, you should always verify the model choices. To
search for the best fit you must examine each model, consider removing outliers, and
compare with alternative fits. The example models show the results of this process.

3 Look at the RMSE Plots. These plots can help you identify problem tests to
investigate. Double-click to view a test of interest (with larger RMSE) in the other
plots.

4 Choose a model to use at a particular operating point by selecting the Best Model
check box in the list of Alternative Local Models.

 Statistical Modeling

4-39

For details on analyzing point-by-point models, see “Analyze Point-by-Point Models and
Choose the Best”.

For next steps, see “Optimization” on page 4-41.

Tip Learn how MathWorks Consulting helps customers develop engine calibrations that
optimally balance engine performance, fuel economy, and emissions requirements: see
Optimal Engine Calibration.

4 Multi-Injection Diesel Calibration

4-40

https://www.mathworks.com/services/consulting/proven-solutions/optimal-engine-calibration.html

Optimization

Optimization Overview
After creating the statistical models to fit the data, you can use them in optimizations. You
can use the accurate statistical engine model to replace the high-fidelity simulation and
run much faster, enabling optimization to generate calibrations in feasible times.

1 Run an optimization to choose whether to use Pilot Injection at each operating point.
2 Optimize fuel consumption over the drive cycle, and meet these constraints:

• Constrain total NOx
• Constrain turbocharger speed
• Constrain smoothness of tables

3 Fill lookup tables for all control inputs.

Set Up Models and Tables for Optimization
To perform an optimization, you need to import the statistical models created earlier in
the Model Browser.

1 In MATLAB, on the Apps tab, in the Automotive group, click MBC Optimization.
2 To see how to import models, on the home page, click Import From Project

The CAGE Import Tool opens. Here, you can select models to import from a model
browser project file or direct from the Model Browser if it is open. However, the
toolbox provides an example file with the models already imported, so click Close to
close the CAGE Import Tool.

3 On the home page, in the Case Studies list, select the multi-injection example, or
select File > Open Project and browse to the example file CI_MultiInject.cag,
found in matlab\toolbox\mbc\mbctraining.

4 Click Models in the left Data Objects pane to view the models.
5 To see how to set up tables to fill with the results of your optimizations, select Tools

> Create Tables from Model. The Create Tables from Model wizard appears.

 Optimization

4-41

6 Select the model BSFC and the Create operating point data set check box, and
click Next.

7 If you left the defaults, you would use the model operating points for the table
breakpoints. However, you need to create different tables to the operating points.

a Clear the Use model operating points check box.
b Select SPEED and TQ for the axis inputs.
c Enter 11 for the table rows and columns.

4 Multi-Injection Diesel Calibration

4-42

Click Next.
8 View the last screen to see how many tables CAGE will create for you if you finish the

wizard.

Click Cancel to avoid creating new unnecessary tables in your example file. The
example file already contains all the tables needed for your calibration results.

 Optimization

4-43

9 Select the Tables view to see all the tables. Observe there are tables named
_wPilot and _noPilot, that will be filled by optimization results. The goal is to fill
separate tables for each mode, pilot injection active and no pilot injection.

Examine the Point Optimization Setup
The example file CI_MultiInject.cag shows the results of the multistage process to
finish this calibration.

1 Click Optimization in the left Processes pane to view the optimizations.

4 Multi-Injection Diesel Calibration

4-44

To complete the calibration, you need to start with a point optimization to determine
whether to use Pilot Injection at each operating point. You use the results of this
point optimization to set up the sum optimization to optimize fuel consumption over
the drive cycle, and meet these constraints:

• Constrain total NOx
• Constrain turbocharger speed
• Constrain smoothness of tables

2 Select the BSFC_PointOpt optimization to view the setup.
3 View the two objectives in the Objectives pane. These are set up to minimize BSFC

and PEAKPRESS. Double-click an objective to view its settings.

4 Observe that the Constraints pane shows a boundary model constraint.
5 Learn the easiest way to set up an optimization like this by selecting Tools > Create

Optimization from Model.

 Optimization

4-45

6 Select the model BSFC and the Create operating point data set check box, and
click Next.

7 Observe that the default settings will create a point optimization to minimize BSFC at
the model operating points, using six free variables and not SPEED, TQ, or Mode, and
constrained by a model boundary constraint.

4 Multi-Injection Diesel Calibration

4-46

8 You want the optimization to identify which pilot mode (active pilot injection or no
pilot injection) is best to use at each operating point. To do this, you must select
Modal optimization from the Algorithm list.

9 You want to include Mode as a free variable, so the optimization can identify which
mode is best to use at each operating point. From the Free variables list, select the
check box to include Mode.

 Optimization

4-47

10 Click Finish to create the new optimization.
11 Compare your new optimization with the example BSFC_PointOpt. Notice the

example has a second objective, to minimize PEAKPRESS. To see how to set this up,
right-click the Objectives pane and select Add Objective.

Examine the Point Optimization Results
The example file CI_MultiInject.cag shows the results of the multistage process to
finish this calibration.

1 Expand the first optimization node, BSFC_PointOpt, and select the output node
underneath, BSFC_PointOpt_Output.

4 Multi-Injection Diesel Calibration

4-48

2 Select View > Selected Solution (or the toolbar button) to view which mode the
optimization selected as best at each operating point. The left-hand pane provides all
optimization results. The right-hand pane provides the results for the current run.

 Optimization

4-49

3 Review the Results Contour plot to see which mode has been selected across all
operating points. Use this view to verify the distribution of mode selection.

4 Click to select a point in the table or Results Contour, and you can use the Selected
solution controls at the top to alter which mode is selected at that point. You might
want to change selected mode if another mode is also feasible at that point. For
example, you can change the mode to make the table more smooth.

5 Use the other objectives to explore the results. For example, you might want to
manually change the selected mode based on an extra objective value. It can be
useful to view plots of the other objective values at your selected solutions. To display
another plot or change the view, right-click the plots to view the options.

For example, right-click the Objective Contours plot. Select Current View >
Objective Graphs.

6 To see both solutions for a particular operating point, use the Pareto Slice view. You
can inspect the objective value (and any extra objective values) for each solution. If
needed, you can manually change the selected mode to meet other criteria, such as
the mode in adjacent operating points, or the value of an extra objective.

For details on tools for choosing a mode at each operating point, see “Analyzing Modal
Optimization Results”.

4 Multi-Injection Diesel Calibration

4-50

Create Sum Optimization from Point Optimization
The point optimization results determine whether to use pilot injection at each operating
point. When you are satisfied with all selected solutions for your modal optimization, you
can make a sum optimization over all operating points. The pilot injection mode must be
fixed in the sum optimization to avoid optimizing too many combinations of operating
modes.

The results of the point optimization were used to set up the sum optimization to optimize
fuel consumption over the drive cycle. To see how to do this:

1 From the point optimization output node, BSFC_PointOpt_Output, select Solution
> Create Sum Optimization.

The toolbox automatically creates a sum optimization for you with your selected best
mode for each operating point. The create sum optimization function converts the
modal optimization to a standard single objective optimization (fmincon algorithm)
and changes the Mode Variable to a fixed variable.

2 Compare your new optimization with the example sum optimization, BSFC_SumOpt.
The example shows you need to set up more constraints to complete the calibration.

The additional constraints make the optimization meet these requirements:

• Constrain total NOx
• Constrain maximum turbocharger speed
• Constrain smoothness of tables with gradient constraints

3 Import all required constraints to your new optimization by selecting Optimization
> Constraints > Import Constraints. Select the example sum optimization and
import all but the first boundary model constraint.

 Optimization

4-51

4 Double-click the additional constraints to open the Edit Constraint dialog box and
view the setup.

This sum constraint controls the total NOx.

This constraint controls maximum turbocharger speed.

4 Multi-Injection Diesel Calibration

4-52

Observe that this constraint does not use the VGTSPEED model directly, but instead
uses a function model VGTSPEEDNorm. You can examine this function model in the
Models view. The function model scales the constraint to help the optimization
routines, which have problems if constraints have very different sizes. VGTSPEED is of
order of 165000, while the other constraints are of the order of 1, so the function
model VGTSPEEDNorm normalizes VGTSPEED by dividing it by 165000.

The following constraint controls the gradient across the MAINSOI table.

 Optimization

4-53

5 In the Optimization view, in the Constraints pane, observe that:

• The gradient constraints are in pairs, one with pilot and one with no pilot.
Separate table gradient constraints are required for different modes because the
goal is to fill separate tables for each mode.

• All the gradient constraints have an entry in the Application Point Set column.

4 Multi-Injection Diesel Calibration

4-54

6 Right-click the table gradient constraint MainSOI_wPilot and click Select
Application Point Set to see how these are set up.

7 Observe the Interpolate for each mode option is selected. This application point
set restricts the table gradient constraint to Mode 1 (active) points only. You can
create an application point set like this by selecting New subset and then choosing

 Optimization

4-55

a subset of the optimization points by clicking in the plot or table. The application
points here correspond to the operating points where the point optimization
determined that the pilot mode should be active (Mode = 1). For comparison, here is
the results contour plot for the point optimization results.

8 Compare the results contour plot with the application points for the next table
gradient constraint, MainSOI_noPilot. These application points restrict the table
gradient constraint to Mode 2 points only, where the pilot is inactive.

4 Multi-Injection Diesel Calibration

4-56

Your sum optimization now contains all the required constraints and is ready to run. Next,
view the results in the example sum optimization.

Fill Tables from Optimization Results
CAGE remembers table filling settings. To view how the example tables are filled:

1 Expand the example sum optimization node BSFC_SumOpt and select the
BSFC_SumOpt_Output node.

2 Select Solution > Fill Tables (or use the toolbar button) to open the Table Filling
from Optimization Results Wizard.

3 On the first screen, observe all the tables in the CAGE tables to be filled list. Click
Next.

4 On the second screen, observe all the tables are matched up with optimization results
to fill them with. Click Next.

 Optimization

4-57

5 On the third screen, observe how some tables have a Filter Rule set up so that they
are filled only with results where Mode is 1 or 2. You can create a filter rule like this
by entering Mode==1 in the Filter Rule column.

4 Multi-Injection Diesel Calibration

4-58

You can either click Finish to fill all the tables, or Cancel to leave the tables
untouched. The example tables are already filled with these settings.

These plots show results similar to the calibration results.

 Optimization

4-59

Pilot Mode Table
This graphic shows the plot of the table to select the active or inactive pilot mode
depending on the speed and commanded torque

You need to fill calibration tables for each control variable described in “Multi-Injection
Diesel Problem Definition” on page 4-2, in both pilot modes, active and inactive.

Following are all the pilot active tables.

4 Multi-Injection Diesel Calibration

4-60

Main Injection Timing (SOI) Table

 Optimization

4-61

Total Injected Fuel Mass Table

4 Multi-Injection Diesel Calibration

4-62

Fuel Pressure Delta Table

 Optimization

4-63

Exhaust Gas Recirculation (EGR) Valve Position Table

4 Multi-Injection Diesel Calibration

4-64

Variable-Geometry Turbo (VGT) Position Table

 Optimization

4-65

Pilot Injection Timing (Pilot SOI Delta) Table

4 Multi-Injection Diesel Calibration

4-66

Pilot Fuel Mass Fraction Table

Examine the Multiobjective Optimization
The example file CI_MultiInject.cag also shows an example multiobjective
optimization. This can useful for calibrations where you want to minimize more than one
objective at a time, in this case, BSFC and NOX. The multiobjective optimization uses the
gamultiobj algorithm.

1 Select the BSFC_NOX node to see how the optimization is set up. Observe the 2
objectives and the optimization information: Multiobjective optimization using a
genetic algorithm.

2 Expand the BSFC_NOX node and select the BSFC_NOX_Output to view the results. To
select the view that you want to examine, right-click in the pane and select Current
View. Select the view.

 Optimization

4-67

3 Examine the Pareto graphs. It can be useful to display the Solution Information view
at the same time to view information about a selected solution. You might want to
select a dominated solution (orange triangle) over a pareto solution (green square) to
trade off desired properties.

4 Multi-Injection Diesel Calibration

4-68

4 Select the Sum_BSFC_NOX node to see how the sum optimization is set up. The sum
optimization was created from the point optimization results. Observe the 2
objectives and all the constraints.

5 Expand the Sum_BSFC_NOX node and select the Sum_BSFC_NOX_Output to view the
results.

Tip Learn how MathWorks Consulting helps customers develop engine calibrations that
optimally balance engine performance, fuel economy, and emissions requirements: see
Optimal Engine Calibration.

 Optimization

4-69

https://www.mathworks.com/services/consulting/proven-solutions/optimal-engine-calibration.html

Model Quickstart

5

Use a Two-Stage Model To Predict Engine Torque
This two-stage modeling example shows you how to create a statistical model of an
engine that predicts the engine brake torque as a function of spark, engine speed, load,
and air/fuel ratio. One-stage modeling fits a model to all the data in one process, without
accounting for the structure of the data. When data has an obvious hierarchical structure
(as here), two-stage modeling is better suited to the task.

The usual way for collecting brake torque data is to fix engine speed, load, and air/fuel
ratio within each test and sweep the spark angle across a range of angles. For this
experimental setup, there are two sources of variation. The first source is variation within
tests when the spark angle is changed. The second source of variation is between tests
when the engine speed, load, and air/fuel ratio are changed. The variation within a test is
called local, and the variation between tests, global. Two-stage modeling estimates the
local and global variation separately by fitting local and global models in two stages. A
local model is fitted to each test independently. The results from all the local models are
used to fit global models across all the global variables. Once the global models have been
estimated, they can be used to estimate the local models' coefficients for any speed, load,
and air/fuel ratio. The relationship between the local and global models is shown in this
block diagram.

5 Model Quickstart

5-2

To get started with two-stage modeling, follow these workflow steps.

Workflow Steps Description
“Open the App and Load Data” on page 5-
4

Set up your local and global models, select
data for modeling, and specify a response
to be modeled.

“Set Up the Model” on page 5-5 Start the toolbox and load and view some
data for modeling.

“Verify the Model” on page 5-8 Examine the model fit to the data by
looking at the local, global, and two-stage
response models.

“Export the Model” on page 5-11 Export your completed model, for example,
for use in the CAGE part of the toolbox for
calibrating.

“Create Multiple Models to Compare” on
page 5-11

Useful methods for creating multiple
different models to search for the best
possible fit to the data.

 Use a Two-Stage Model To Predict Engine Torque

5-3

Open the App and Load Data
1 In MATLAB, on the Apps tab, in the Automotive group, click MBC Model Fitting.
2 If you have never used the toolbox before, the User Information dialog box appears. If

you want, you can fill in any or all of the fields: your name, company, department, and
contact information, or you can click Cancel. The user information is used to tag
comments and actions so that you can track changes in your files (it does not collect
information for MathWorks).

3 When you finish with the User Information dialog box, click OK.

The Model Browser window appears.

In this window, the left pane, All Models, shows the hierarchy of the models currently
built in a tree. At the start, only one node, the project, is in the tree. As you build models,
they appear as child nodes of the project. The right panes change, depending on the tree
node selected. You navigate to different views by selecting different nodes in the model
tree.

Load the example data file holliday.xls:

1 From the startup project node view, in the Common Tasks pane, click Import data.
2 In the Select File to Import dialog box, browse to the file holliday.xls in the

mbctraining directory. Click Open or double-click the file.

The Data Editor opens.
3 View plots of the data in the Data Editor by selecting variables and tests in the lists

on the left side. Have a look through the data to get an idea of the shape of curve
formed by plotting torque against spark.

Use the editor to prepare your data before model fitting.
4 Close the Data Editor to accept the data and return to the Model Browser. Notice that

the new data set appears in the Data Sets pane.

This data is from Holliday, T., “The Design and Analysis of Engine Mapping Experiments:
A Two-Stage Approach,” Ph.D. thesis, University of Birmingham, 1995.

5 Model Quickstart

5-4

Set Up the Model
Specifying Model Inputs

You can use the imported data to create a statistical model of an automobile engine that
predicts the torque generated by the engine as a function of spark angle and other
variables.

1 In the Model Browser project node view, in the Common Tasks pane, click Fit
models.

2 In the Fit Models dialog box, observe that the Data Object you imported is selected
in the Data set list.

3 Click the Two-Stage test plan icon in the Template pane.
4 In the Inputs and Responses pane, select data channels to use for the responses

you want to model.

The model you are building is intended to predict the torque generated by an engine
as a function of spark angle at a specified operating point defined by the engine
speed, air/fuel ratio, and load. The input to the local model is therefore the spark
angle, and the response is torque.

The inputs to the global model are the variables that determine the operating point of
the system being modeled. In this example, the operating point of the engine is
determined by the engine speed in revolutions per minute (rpm - often called N), load
(L), and air/fuel ratio (afr).

a Select spark in the Data channels list and click the button to add it to the
Local inputs list.

b Select n, load, and afr in the Data channels list and click the button to add
them to the Global inputs list.

 Use a Two-Stage Model To Predict Engine Torque

5-5

5 Model Quickstart

5-6

5 Leave the responses empty, and click OK.

The default name of the new test plan, Two-Stage, appears in the Model Browser tree, in
the All Models pane.

Setting Up the Response Model

To achieve the best fit to torque/spark sweeps, you need to change the local model type
from the default. The type of a local model is the shape of curve used to fit the test data,
for example, quadratic, cubic, or polynomial spline curves. In this example, you use
polynomial spline curves to fit the test data. A spline is a curve made up of pieces of
polynomial, joined smoothly together. The points of the joins are called knots. In this case,
there is only one knot. These polynomial spline curves are useful for torque/spark models,
where different curvature is required above and below the maximum.

To change from the default models and specify polynomial spline as the local model type,

1 In the Model Browser, select the test plan node Two-Stage, and in the Common
Tasks pane, click Fit models. A dialog box asks if you want to change all the test
plan models. Click Yes.

2 In the Fit Models Wizard, click Next to continue using the currently selected data.
3 The next screen shows the model inputs you already selected. Click Next
4 To choose the response, on the Response Models screen, select tq and click Add.
5 Edit the Local model type by clicking Set Up.

The Local Model Setup dialog box appears.

a Select Polynomial Spline from the Local Model Class list.
b Edit the Spline Order Below knot to 2, and leave Above knot set to 2.
c Click OK to close the dialog box.

6 Select Maximum under Datum. Only certain model types with a clearly defined
maximum or minimum can support datum models.

7 Click Finish.

The Model Browser calculates local and global models using the test plan models you
just set up.

Notice that the new name of the local model class, PS (for polynomial spline) 2,2 (for
spline order above and below knot) now appears on a new node in the tree in the All
Models pane, called PS22.

 Use a Two-Stage Model To Predict Engine Torque

5-7

Verify the Model
Verifying the Local Model

The first step is to check that the local models agree well with the data:

1 If necessary, select PS22 (the local node) on the Model Browser tree.

The Local Model view appears, displaying the local model fitting the torque/spark
data for the first test and diagnostic statistics that describe the fit. The display is
flexible in that you can drag, open, and close the divider bars separating the regions
of the screen to adjust the view.

2 View local model plots and statistics. The Sweep Plot shows the data being fitted by
the model (blue dots) and the model itself (line). The red spot shows the position of
the polynomial spline knot, at the datum (maximum) point.

3 Look for problem tests with the RMSE Plots. The plot shows the standard errors of all
the tests, both overall and by response feature. Navigate to a test of interest by
double-clicking a point in the plot to select the test in the other plots in the local
model view.

4 In the Diagnostic Statistics plot pane, click the Y-axis factor pop-up menu and select
Studentized residuals.

5 Scroll through local models test by test using the Test arrows at the top left, or by
using the Select Test button.

6 Select Test 588. You see a data point outlined in red. This point has automatically
been flagged as an outlier.

7 Right-click the plot and select Remove Outliers. Observe that the model is refitted
without the outlier.

Both plots have right-click pop-up menus offering various options such as removing and
restoring outliers and confidence intervals. Clicking any data point marks it in red as an
outlier.

You can use the Test Notes pane to record information on particular tests. Each test has
its own notes pane. The test numbers of data points with notes recorded against them are
colored in the global model plots, and you can choose the color using the Test Number
Color button in the Test Notes pane. Quickly locate tests with notes by clicking Select
Test.

5 Model Quickstart

5-8

Verifying the Global Model

The next step is to check through the global models to see how well they fit the data:

1 Expand the PS22 local node on the Model Browser tree by clicking the plus sign (+)
to the left of the icon. Under this node are four response features of the local model.
Each of these is a feature of the local model of the response, which is torque.

2 Select the first of the global models, knot.

You see a dialog box asking if you want to update fits, because you removed an
outlier at the local level. Click Yes.

The Response Feature view appears, showing the fit of the global model to the data
for knot. Fitting the local model is the process of finding values for these coefficients
or response features. The local models produce a value of knot for each test. These
values are the data for the global model for knot. The data for each response feature
come from the fit of the local model to each test.

Use the plots to assess model fits.
3 Select the response feature Bhigh_2. One outlier is marked. Points with an absolute

studentized residual value of more than 3 are automatically suggested as outliers
(but included in the model unless you take action). You can use the right-click menu
to remove suggested outliers (or any others you select) in the same way as from the
Local Model plots. Leave this one. If you zoom in on the plot (Shift-click-drag or
middle-click-drag) you can see the value of the studentized residual of this point more
clearly. Double-click to return to the previous view.

4 Select the other response features in turn: max and Blow 2. You see that Blow 2 has
a suggested outlier with a very large studentized residual; it is a good distance away
from all the other data points for this response feature. All the other points are so
clustered that removing this one could greatly improve the fit of the model to the
remaining points, so remove it.

Creating the Two-Stage Model

Recall how two-stage models are constructed: two-stage modeling partitions the variation
separately between tests and within tests, by fitting local and global models separately. A
model is fitted to each test independently (local models). These local models are used to
generate global models that are fitted across all tests.

For each sweep (test) of spark against torque, you fit a local model. The local model in
this case is a spline curve, which has the fitted response features of knot, max, Bhigh_2,

 Use a Two-Stage Model To Predict Engine Torque

5-9

and Blow_2. The result of fitting a local model is a value for knot (and the other
coefficients) for each test. The global model for knot is fitted to these values (that is, the
knot global model fits knot as a function of the global variables). The values of knot from
the global model (along with the other global models) are then used to construct the two-
stage model

The global models are used to reconstruct a model for the local response (in this case,
torque) that spans all input factors. This is the two-stage model across the whole global
space, derived from the global models.

After you are satisfied with the fit of the local and global models, it is time to construct a
two-stage model from them.

1 Return to the Local Model view by clicking the local node PS22 in the Model Browser
tree.

2 To create a two-stage model, click Create Two-Stage in the Common Tasks pane.

Comparing the Local Model and the Two-Stage Model

1 Now the plots in the Local Model view show two lines fitted to the test data. Scroll
though the tests using the left/right arrows or the Select Test button at the top left.
The plots now show the fit of the two-stage model for each test (green circles and
line), compared with the fit of the local model (blue line) and the data (blue dots).
Zoom in on points of interest by Shift-click-dragging or middle-click-dragging.
Double-click to return the plot to the original size.

Compare how close the two-stage model fit is to both the data and the local fit for
each test.

2
Notice that the local model icon has changed (from the local icon showing a

house, to a two-stage icon showing a house and a globe) to indicate that a two-
stage model has been calculated.

Response Node

Click the Response node (tq) in the Model Browser tree.

Now at the Response node in the Model Browser tree (tq), which was previously blank,
you see plots showing you the fit of the two-stage model to the data. You can scroll
through the tests, using the arrows at top left, to view the two-stage model against the
data for groups of tests.

5 Model Quickstart

5-10

You have now completed setting up and verifying a two-stage model.

Export the Model
All models created in the Model Browser are exported using the File menu. A model can
be exported to the MATLAB workspace, to CAGE, or to a Simulink model.

1 Click the tq node in the model tree.
2 Choose File > Export Models. The Export Model dialog box appears.
3 For the Export to parameter, select the Simulink, Workspace, or CAGE.
4 Click OK to export the models.

To import models into CAGE to create calibrations, use the CAGE Import Tool instead
for more flexibility.

Create Multiple Models to Compare
Methods For Creating More Models

After you have fitted and examined a single model, you normally want to create more
models to search for the best fit. You can create individual new models or use the Create
Alternatives common task to create a selection of models at once, or create a template to
save a variety of model settings for reuse.

To use the Model Template dialog box to quickly create a selection of different child nodes
to compare, click Create Alternatives in the Common Tasks pane. The following
exercises show you examples of these processes.

Creating New Local Models

To follow these examples, you need to create the initial models.

1 As an example, select the tq response node and click New Local Model in the
Common Tasks pane.

The Local Model Setup dialog box appears.
2 Select a Polynomial Spline, and edit the spline order to 3 below the knot and 2

above. Click OK.

A new set of local models (and associated response feature models) is calculated.

 Use a Two-Stage Model To Predict Engine Torque

5-11

3 Return to the parent tq response node , and click New Local Model again, in the
Common Tasks pane.

4 Select a Polynomial with an order of 2 in the Local Model Setup dialog box. Click
OK.

A new set of local models and response feature models is calculated.

Now you have three alternative local models to compare: two polynomial splines (order
3,2 and order 2,2) and a polynomial (order 2), as shown.

You can select the alternative local models in turn and compare their statistics. For an
example, follow these steps:

1 Select the new local model node PS32.
2 Select test 587 in the Test edit box.
3 In the Local statistics pane, observe the value of RMSE (root mean squared error)

for the current (ith) test.

The RMSE value is our basic measure of how closely a model fits some data, which
measures the average mismatch between each data point and the model. This is why
you should look at the RMSE values as your first tool to inspect the quality of the fit
— high RMSE values can indicate problems.

4 Now select the local model node POLY2 and see how the value of RMSE changes.

5 Model Quickstart

5-12

Observe that the shape of the torque/spark sweep for this test is better suited to a
polynomial spline model than a polynomial model. The curve is not symmetrical
because curvature differs above and below the maximum (marked by the red cross at
the datum). This explains why the value of RMSE is much lower for PS32 (the
polynomial spline) than for the POLY2 (polynomial) for this test. The polynomial
spline is a better fit for the current test.

5 Look through some other tests and compare the values of RMSE for the different local
models. To choose the most suitable local model you must decide which fits the
majority of tests better, as there are likely to be differences among best fit for
different tests.

6 To help you quickly identify which local models have the highest RMSE, indicating
problems with the model fit, check the RMSE Plots.

a Use the plot to help you identify problem tests. Use the drop-down menus to
change the display. For example, select s_knot to investigate the error values
for knot (MBT), or RMSE to look at overall error.

b You can navigate to a test of interest from the RMSE Plots by double-clicking a
point in the plot to select the test in the other plots.

7 Look at the value of Local RMSE reported in the Pooled Statistics pane on the
right (this is pooled between all tests). Now switch between the POLY2 and the PS32
local models again and observe how this value changes.

8 You can compare these values directly by selecting the parent tq response node,
when the Local RMSE is reported for each child local model in the list at the bottom.

When all child models have a two-stage model calculated, you can also compare two-
stage values of RMSE here. Remember, you can see statistics to compare the list of
child models of the response node in this bottom list pane.

When comparing models, look for lower RMSE values to indicate better fits. However,
remember that a model that interpolates between all the points can have an RMSE of
zero but be useless for predicting between points. Always use the graphical displays to
visually examine model fits and beware of “overfitting” — chasing points at the expense of
prediction quality. You will return to the problem of overfitting in a later section when you
have two-stage models to compare.

Adding New Response Features

Recall that two-stage models are made up of local models and global models. The global
models are fitted to the response features of the local models. The response features

 Use a Two-Stage Model To Predict Engine Torque

5-13

available are specific to the type of local model. You can add different response features
to see which combination of response features makes the best two-stage model as follows:

1 Select the local model node PS32.
2 Select File > New Response Feature.

A dialog box appears with a list of available response features.
3 Select f(x+datum) from the list and enter -10 in the Value edit box. Click OK.

A new response feature called FX_less10 is added under the PS32 local model.
Recall that the datum marks the maximum, in this case maximum torque. The spark
angle at maximum torque is referred to as maximum brake torque (MBT). You have
defined this response feature (f(x+datum)) to measure the value of the model
(torque) at (-10 + MBT) for each test. It can be useful to use a response feature like
this to track a value such as maximum brake torque (MBT) minus 10 degrees of spark
angle. This response feature is not an abstract property of a curve, so engineering
knowledge can then be applied to increase confidence in the models.

4 Select the local node PS32, and click Create Two-Stage in the Common Tasks pane.
The Model Selection window opens, because you now need to choose 5 of the 6
response features to form the two-stage model.

In the Model Selection window, observe four possible two-stage models in the Model
List. This is because you added a sixth response feature. Only five (which must
include knot) are required for the two-stage model, so you can see the combinations
available and compare them. Note that not all combinations of five response features
can completely describe the shape of the curve for the two-stage model, so only the
possible alternatives are shown.

5 Close the Model Selection window and click Yes to accept one of the models as best.

Notice that the response features chosen to calculate the two-stage model are
highlighted in blue, and the unused response feature is not highlighted.

6 Select the tq response node to see a comparison of the statistics of both two-stage
models (your original PS22 and the new PS32).

Remember that the POLY2 local model has no two-stage model yet; no two-stage
statistics are reported for POLY2 in the bottom list pane. You cannot fully compare
the two-stage models until every local model in the test plan has a two-stage model
calculated.

7 To calculate the two-stage model for POLY2, in the Common Tasks pane, click Create
Two-Stage.

5 Model Quickstart

5-14

Comparing Models
1 Now you have three two-stage models. Select the tq response node and look at the

statistics, particularly Local RMSE and Two-Stage RMSE reported in the list of child
models at the bottom.

• Look for lower RMSE values to indicate better fits.
• Look for lower PRESS RMSE values to indicate better fits without overfitting.

PRESS RMSE is a measure of the predictive power of your models.

It is useful to compare PRESS RMSE with RMSE as this may indicate problems
with overfitting. RMSE is minimized when the model gets close to each data point;
“chasing” the data will therefore improve RMSE. However, chasing the data can
sometimes lead to strong oscillations in the model between the data points; this
behavior can give good values of RMSE but is not representative of the data and
will not give reliable prediction values where you do not already have data. The
PRESS RMSE statistic guards against this by testing how well the current model
would predict each of the points in the data set (in turn) if they were not included
in the regression. To get a small PRESS RMSE usually indicates that the model is
not overly sensitive to any single data point.

• Look for lower T^2 values. A large T^2 value indicates that there is a problem
with the response feature models.

• Look for large negative log likelihood values to indicate better fits.
2 To compare all three two-stage models simultaneously, select Model > Selection

Window. Here you can see the same statistics to compare the models in the bottom
list, but you can also make use of a variety of views to look for the best fit:

• You can plot the models simultaneously on the Tests, Residuals and Cross Section
views (Shift- or Ctrl-click to select models in the list)

• You can view each model in the Response Surface view as a surface; movie,
contour or multiline plot, and as a table

3 You can select a model and click Assign Best in the Model Selection window, or
double-click a model to assign it as best.

4 When you close the Model Selection window and return to the Model Browser, the
model you selected as best is copied to the parent response node, tq.

Creating New Global Models

In this example, you have not yet searched for the best global model types. You would
normally do this before creating and comparing two-stage models. For the purpose of this

 Use a Two-Stage Model To Predict Engine Torque

5-15

tutorial, you have already created two-stage models and used RMSE to help you identify
better models. The principle is the same at each level in the model tree: add new child
models and choose the best. You can create any number of child nodes to search for the
best global model fit for each response feature in your tree.

1 Select the local node POLY2.
2 To create a selection of alternatives for each response feature node, in the Common

Tasks pane, click Build Global Models.
3 In the Model Template dialog box, click New, then click OK.
4 Observe the default list of a variety of model types, then click OK. It is worth trying

the default model settings for a quick exploration of the trends in the data.
5 In the Model Selection dialog box, leave the default selection criterion for

automatically choosing the best child node, and click OK.

The toolbox builds the models and selects the best using your selection criteria.

Note The toolbox automatically builds models in parallel if you have Parallel
Computing Toolbox.

6 Assess all the fits in the Alternative Models list in case you want to choose an
alternative as a better fit.

7 Notice that the child node model assigned as best is highlighted in blue in the
Alternative Models list and the model tree. The local node has changed from the two-
stage icon back to the local model icon (a red house). This is because you have
changed the response feature models, and so you need to recalculate the two-stage
model using the new global models for the response features.

When you have chosen best global models for all your response features, you need to
recalculate the two-stage model.

8 When you have chosen a best model among alternatives, it can be useful to clean up
the rejected models by selecting Delete Alternatives in the Common Tasks pane.
You can also select File > Clean Up Tree. This deletes all rejected child models
where best models have been chosen; only the child nodes selected as best remain.

You can use the Model Template dialog box to create and save templates of model types
you often want to build. Creating a template containing a list of all the models you want is
an efficient way to quickly build a selection of alternative model child nodes for many
global models. Use these techniques to find models well suited to the data for each of
your global models.

5 Model Quickstart

5-16

See Also

More About
• “Fit a One-Stage Model”
• “Two-Stage Models for Engines”
• “Data Manipulation for Modeling”
• “Gasoline Engine Calibration”
• “Multi-Injection Diesel Calibration”

 See Also

5-17

Generate Current Controller Calibration Tables for Flux-
Based Motor Controllers

Using the Model-Based Calibration Toolbox, you can generate optimized calibration tables
for flux-based motor controllers. This example shows how to import data, fit a model, and
optimize the data based on objectives and constraints.

Based on nonlinear motor flux data, the calibration tables optimize:

• Motor efficiency
• Maximum torque per ampere (MTPA)
• Flux weakening

The calibration tables are d- and q- axis reference currents as functions of motor torque
and motor speed.

To generate optimized current calibration tables, follow these workflow steps.

Workflow Steps Description
“Collect and Post Process Motor Data”
on page 5-19

Collect the nonlinear motor flux data from
dynamometer testing or finite element
analysis (FEA). For this example, file
ex_motor_data.xlsx contains the data that
you need:

• d-axis current, Id, in A
• q-axis current, Iq, in A
• Motor speed, n, in rpm
• d-axis voltage, Vd, in V
• q-axis voltage, Vq, in V
• Electromagnetic motor torque, Te, in N.m

5 Model Quickstart

5-18

Workflow Steps Description
“Model Motor Data” on page 5-20 Use a one-stage model to fit the

ex_motor_data.xlsx data. Specifically:

• Import data
• Filter data
• Fit model

“Generate Calibration” on page 5-25 Calibrate and optimize the data using
objectives and constraints. Specifically:

• Create functions.
• Create tables from model.
• Run an optimization.
• Generate and fill optimized current

controller calibration tables that are
functions of motor torque and motor speed.

Collect and Post Process Motor Data
Collect this nonlinear motor flux data from dynamometer testing or finite element analysis
(FEA):

• d- and q- axis current
• d- and q- axis flux linkage
• Electromagnetic motor torque

Use the collected data and motor speed to calculate the d- and q-axis voltages:

vd = Rsid− ωeλq
vq = Rsiq + ωeλd

n =
60ωe
2πP

The equations use these variables:

Vd, Vq d- and q- axis voltage, respectively

 Generate Current Controller Calibration Tables for Flux-Based Motor Controllers

5-19

id, iq d- and q- axis current, respectively
λd, λq d- and q- axis flux linkage, respectively
RS Stator resistance
ωe Electrical motor angular speed, rad/s
n Motor speed, rpm
P Number of pole pairs

Finally, for each data point, create a file containing:

• d-axis current, Id, in A
• q-axis current, Iq, in A
• Motor speed, n, in rpm
• d-axis voltage, Vd, in V
• q-axis voltage, Vq, in V
• Electromagnetic motor torque, Te, in N·m

For this example, the data file matlab\toolbox\mbc\mbctraining
\ex_motor_data.xlsx contains the motor flux data.

Model Motor Data
To model the motor data, use the MBC Model Fitting app to import, filter, and fit the
data with a one-stage model. For this example, the data file ex_motor_data.xlsx
contains a large data set. You could consider using a design of experiment (DOE) to limit
the data. However, the data set represents typical FEA analysis results.

Import Data

For this example, ex_motor_data.xlsx contains this motor controller data:

• d-axis current, Id, in A
• q-axis current, Iq, in A
• Motor speed, n, in rpm
• d-axis voltage, Vd, in V
• q-axis voltage, Vq, in V

5 Model Quickstart

5-20

• Electromagnetic motor torque, Te, in N·m

1 In MATLAB, on the Apps tab, in the Automotive group, click MBC Model Fitting.
2 In the Model Browser home page, click Import Data. Click OK to open a data source

file.
3 Navigate to the matlab\toolbox\mbc\mbctraining folder. Open data file

ex_motor_data.xlsx. The Data Editor opens with your data.

 Generate Current Controller Calibration Tables for Flux-Based Motor Controllers

5-21

Filter Data

You can filter data to exclude records from the model fit. In this example, set up a filter to
exclude voltage and current magnitudes that are less than a specified threshold.
Specifically:

• Voltage magnitude, Vs, less than or equal to 300 V.
• Current magnitude, Is, less than or equal to 350 A.

1 In the Data Editor, select Tools > Variables to open the Variable Editor. Create
these variables. Add units.

• Is = sqrt (Id.^2 + Iq.^2)
• Vs = sqrt (Vd.^2 + Vq.^2)

2 In the Data Editor, select Tools > Filters to open the Filter Editor. Create these
filters:

• Is <= 350
• Vs <= 300

Fit Model

Fit the data to a one-stage 5-dimensional model with these responses and inputs:

• Responses

• d-axis voltage, Vd, in V

5 Model Quickstart

5-22

• q-axis voltage, Vq, in V
• Inputs

• d-axis current, Id, in A
• q-axis current, Iq, in A
• Motor speed, n, in rpm
• Electromagnetic motor torque, Te, in N·m

1 In the Model Browser, select Fit Models.
2 In Fit Models, configure a One-Stage model with these responses and inputs.

Responses Inputs
Vd

Vq

Id

Iq

Trq

n

 Generate Current Controller Calibration Tables for Flux-Based Motor Controllers

5-23

3 To fit the model, select OK. If prompted, accept changes to data. By default, the fit
uses a Gaussian Process Model (GPM) to fit the data.

4 After the fit completes, examine the response models for Vd and Vq. The Model
Browser displays information that you can use to determine the accuracy of the
model fit.

• In the Model Browser, select Vd. Examine the response surface and diagnostic
statistics. In this example, the response surface indicates that Vd increases as Id
approaches 0. The diagnostics indicate that the response residuals are mostly
within ±1 V. These results indicate a reasonably accurate fit.

5 Model Quickstart

5-24

5 Save your project. For example, select Files > Save Project. Save gs_example.mat
to work folder.

Generate Calibration
After you fit the model, create functions and tables, run the optimization, and fill the
calibration tables.

 Generate Current Controller Calibration Tables for Flux-Based Motor Controllers

5-25

Create Functions

Create the functions to use when you optimize the calibration. In this example, set up
functions for:

• Voltage magnitude, Vs

• Current magnitude, Is

• Torque per amp, TPA

1 In MATLAB, on the Apps tab, in the Automotive group, click MBC Optimization.
2 In the Cage Browser, select Import Models. If it is not already opened, in the MBC

Model Fitting browser, open the gs_example.mat project.

3 In Cage Import tool, select Vd and Vq. Click Import Selected Items.
4 In Import Models, click OK. Close the CAGE Import Tool.

5 Model Quickstart

5-26

5 In the Cage Browser toolbar, use New Function Model wizard to create these
functions:

• Is = sqrt (Id.^2 + Iq.^2)
• Vs = sqrt (Vd.^2 + Vq.^2)
• TPA = Trq./Is

 Generate Current Controller Calibration Tables for Flux-Based Motor Controllers

5-27

6 In the Cage Browser, verify that the function models for Is, Vs, and TPA have these
descriptions.

7 Select File > Save Project. Save gs_example.cag to the work folder.

Create Tables from Model

Create tables that the Model-Based Calibration Toolbox optimizer uses to store the
optimized parameters. For this example, the tables are:

• d-axis current, Id, as a function of motor torque, Trq, and motor speed, n.
• q-axis current, Iq, as a function of motor torque, Trq, and motor speed, n.

1 In the Cage Browser, select Tables and Tradeoff. In Create Tables from Model,
select Vd. Click Next.

5 Model Quickstart

5-28

2 In Table Inputs, set the Table rows to 31. Set Table columns to 29. Click Next.

 Generate Current Controller Calibration Tables for Flux-Based Motor Controllers

5-29

3 In Create Tables from Model:

• Select Id and Iq.
• Clear Vd.
• Click Finish.

4 In the CAGE Browser, examine the tables.

5 Model Quickstart

5-30

Run Optimization

In this example, run a point optimization with these specifications:

• Voltage magnitude, Vs, less than or equal to 289 V.
• Current magnitude, Is, less than or equal to 300 A.
• Maximizes torque per ampere, TPA.

1 On the Cage Browser home, select Optimization.

2 In Create Optimization from Model, select TPA and Next.

 Generate Current Controller Calibration Tables for Flux-Based Motor Controllers

5-31

3 In Create Optimization from Model:

• Select Id and Iq. Clear Trq.
• Set Objective type to Maximize.
• Click Finish.

5 Model Quickstart

5-32

4 Add a boundary constraint for the Vd model. In the CAGE Browser, select
Optimization > Constraints > Add Constraint. Set these parameters:

• Input model: Vd
• Evaluate quantity: Boundary constraint

Verify the settings. Click OK.

5 Add the optimization constraints. In the CAGE Browser, select Optimization >
Constraints > Add Constraints to open Edit Constraint. Use the dialog box to
create constraints on the current and voltage.

• Is <= 300
• Vs <= 289

 Generate Current Controller Calibration Tables for Flux-Based Motor Controllers

5-33

6 In the CAGE Browser, select Import initial data from a table grid.

In Import From Table Grid, select Id_Table.

5 Model Quickstart

5-34

7 In the Cage Browser, carefully verify the Objectives and Constraints.

 Generate Current Controller Calibration Tables for Flux-Based Motor Controllers

5-35

8 In the Cage Browser, select Set Up. Set Number of start points to 3. Click Ok.

5 Model Quickstart

5-36

9 In the Cage Browser, select Run. The optimization can take time to run and slow
other computer processes. View progress in Running Optimization.

The optimization can take time to run and slow other computer processes. View
progress in Running Optimization.

The optimization results are similar to these.

 Generate Current Controller Calibration Tables for Flux-Based Motor Controllers

5-37

Fill Tables

1 In the CAGE Browser, select Fill Tables.

2 Use the Table Filling from Optimization Results Wizard to fill the Id_Table and
Iq_Table tables.

5 Model Quickstart

5-38

• For the Id_Table, fill with Id.
• For the Iq_Table, fill with Iq.

Accept the defaults. Click Finish.

 Generate Current Controller Calibration Tables for Flux-Based Motor Controllers

5-39

3 Review results for Iq_Table. The results are similar to these.

5 Model Quickstart

5-40

4 Review results for Id_Table. The results are similar to these.

 Generate Current Controller Calibration Tables for Flux-Based Motor Controllers

5-41

5 Select File > Save Project. Save gs_example.cag to work folder.

Export Results

1 Select File > Export > Calibration > All Items.
2 Use Export Calibration Data to select the items to export and format. For example,

export the Id and Iq tables and breakpoints to MATLAB file gs_example.m.

5 Model Quickstart

5-42

References
[1] Hu, Dakai, Yazan Alsmadi, and Longya Xu. “High fidelity nonlinear IPM modeling

based on measured stator winding flux linkage.” IEEE® Transactions on Industry
Applications, Vol. 51, No. 4, July/August 2015.

[2] Chen, Xiao, Jiabin Wang, Bhaskar Sen, Panagiotis Lasari, Tianfu Sun. “A High-Fidelity
and Computationally Efficient Model for Interior Permanent-Magnet Machines
Considering the Magnetic Saturation, Spatial Harmonics, and Iron Loss Effect.”
IEEE Transactions on Industrial Electronics, Vol. 62, No. 7, July 2015.

 Generate Current Controller Calibration Tables for Flux-Based Motor Controllers

5-43

Mapped Engine Lookup Tables
The Model-Based Calibration Toolbox includes projects and templates that you can use to
calibrate mapped engine lookup tables. Use the lookup tables in these Powertrain
Blockset™ engine blocks:

• Mapped CI Engine — Implements a mapped compression-ignition (CI) engine model
• Mapped SI Engine — Implements a mapped spark-ignition (SI) engine model

To help you get started with the calibration, the CAGE browser and Model Explorer
include these templates and examples.

Example Template Lookup Tables
“Mapped CI Lookup
Tables as Functions of
Fuel Mass and Engine
Speed” on page 5-45

CI Mapped Engine-
Fuel Input

• Power
• Air
• Fuel
• Temperature
• Efficiency
• Hydrocarbon (HC) emissions
• Carbon monoxide (CO) emissions
• Nitric oxide and nitrogen dioxide (NOx)

emissions
• Carbon dioxide (CO2) emissions
• Particulate matter (PM) emissions

“Mapped CI Lookup
Tables as Functions of
Engine Torque and
Speed” on page 5-59

CI Mapped Engine-
Torque Input

“Mapped SI Lookup
Tables as Functions of
Engine Torque and
Speed” on page 5-74

SI Mapped Engine-
Torque Input

See Also
Mapped CI Engine | Mapped SI Engine

5 Model Quickstart

5-44

Mapped CI Lookup Tables as Functions of Fuel Mass and
Engine Speed

The Model-Based Calibration Toolbox includes projects and templates that you can use to
generate calibrated compression-ignition (CI) lookup tables as a function of fuel mass and
engine speed. Use the tables in the Powertrain Blockset Mapped CI Engine block.

Use Test Plan Template to Fit Models
1 In the Model Browser, to open the data, select Import Data. Navigate to the

spreadsheet that contains the data.

For example, open matlab\toolbox\mbc\mbctraining\CiEngineData.xlsx.

The spreadsheet contains firing and motor data collected at different engine torques
and speeds.

Firing Data Description
FuelMassCmd Commanded fuel mass, in mg
Torque Engine torque, in Nm
EngSpd Engine speed, in rpm
AirMassFlwRate Air mass flow, in kg/s
BSFC Engine brake-specific fuel consumption (BSFC), in g/kWh
CO2MassFlwRate Carbon dioxide emission mass flow, in kg/s
COMassFlwRate Carbon monoxide emission mass flow, in kg/s
ExhTemp Exhaust temperature, in K
FuelMassFlwRate Fuel mass flow, in kg/s
HCMassFlwRate Hydrocarbon emission mass flow, in kg/s
NOxMassFlwRate Nitric oxide and nitrogen dioxide emissions mass flow, in

kg/s
PMMassFlwRate Particulate matter emission mass flow, in kg/s

Nonfiring motor data is collected at different engine speeds, without fuel
consumption.

 Mapped CI Lookup Tables as Functions of Fuel Mass and Engine Speed

5-45

Nonfiring Data Description
Torque Engine torque command, in Nm
EngSpd Engine speed, in rpm
AirMassFlwRate Air mass flow, in kg/s

2 In the Select Sheet dialog box, select the data that you want to calibrate. For
example, select Firing Data.

3 Optionally, use the Data Editor filter the data. After you have filtered the data, close
the Data Editor.

4 In the Model Browser, select Fit Models. In the Fit Models dialog box, in the
Template pane, select the template.

For example, to fit the firing data in the spreadsheet, select MappedEngine-Fuel.
Do not change the default responses and inputs.

5 Model Quickstart

5-46

5 Review the model fits.

To review the response models, in the tree, select the top level.

 Mapped CI Lookup Tables as Functions of Fuel Mass and Engine Speed

5-47

To review the response surfaces, in the tree, select the response.

Open CAGE Project
To open the project, in the CAGE Case Studies pane:

5 Model Quickstart

5-48

1 Select CI Mapped Engine - Fuel Input.
2 Click Open Example.

The project includes these tables.

Name Descriptio
n

Table

f_air Air mass
flow, in kg/s

 Mapped CI Lookup Tables as Functions of Fuel Mass and Engine Speed

5-49

Name Descriptio
n

Table

f_eff Engine
brake-
specific fuel
consumptio
n (BSFC), in
g/kWh

f_co2 Carbon
dioxide
emission
mass flow,
in kg/s

5 Model Quickstart

5-50

Name Descriptio
n

Table

f_co Carbon
monoxide
emission
mass flow,
in kg/s

 Mapped CI Lookup Tables as Functions of Fuel Mass and Engine Speed

5-51

Name Descriptio
n

Table

f_texh Exhaust
temperature
, in K

5 Model Quickstart

5-52

Name Descriptio
n

Table

f_fuel Fuel mass
flow, in kg/s

f_hc Hydrocarbo
n emission
mass flow,
in kg/s

 Mapped CI Lookup Tables as Functions of Fuel Mass and Engine Speed

5-53

Name Descriptio
n

Table

f_nox Nitric oxide
and
nitrogen
dioxide
emissions
mass flow,
in kg/s

5 Model Quickstart

5-54

Name Descriptio
n

Table

f_pm Particulate
matter
emission
mass flow,
in kg/s

 Mapped CI Lookup Tables as Functions of Fuel Mass and Engine Speed

5-55

Name Descriptio
n

Table

f_brake Engine
torque
command,
in Nm

Use CAGE to Import and Replace Models
Use the project to import and replace existing models with new models.

1 In CAGE, select File > Import > Model. If you do not have a model open, the model
browser opens. Select a model.

2 If your current project has two or more test plans, the Import Models dialog box
prompts you to merge compatible models. Select No.

3 The Import Models dialog box prompts you to Replace, Skip, or Create new
models. Select Replace.

5 Model Quickstart

5-56

After you import and replace the existing models, the Import Models wizard opens the
Update Tables dialog box. You can use the Update Table dialog box to rerun optimizations
and feature fills to update the tables with the new models.

 Mapped CI Lookup Tables as Functions of Fuel Mass and Engine Speed

5-57

Review and Export Tables
1 In CAGE, review the calibrated tables.
2 To export the tables, select File > Export > Calibration > All Items. Use the

Export to parameter to specify the format. To export so that you can use the data for
the Powertrain Blockset mapped engine blocks, select Simulink Model
Workspace. The Model-Based Calibration Toolbox saves the mapped engine table
and breakpoint data to the model workspace.

See Also
Mapped CI Engine

More About
• “Data Manipulation”
• “Assess High-Level Model Trends”
• “Assess One-Stage Models”
• “Generate Mapped CI Engine from a Spreadsheet” (Powertrain Blockset)

5 Model Quickstart

5-58

Mapped CI Lookup Tables as Functions of Engine Torque
and Speed

The Model-Based Calibration Toolbox includes projects and templates that you can use to
generate calibrated compression-ignition (CI) lookup tables as a function of engine torque
and speed. Use the tables in the Powertrain Blockset Mapped CI Engine block.

Use Test Plan Template to Fit Models
1 In the Model Browser, to open the data, select Import Data. Navigate to the

spreadsheet that contains the data.

For example, open matlab\toolbox\mbc\mbctraining\CiEngineData.xlsx.

The spreadsheet contains firing and motor data collected at different engine torques
and speeds.

Firing Data Description
FuelMassCmd Commanded fuel mass, in mg
Torque Engine torque, in Nm
EngSpd Engine speed, in rpm
AirMassFlwRate Air mass flow, in kg/s
BSFC Engine brake-specific fuel consumption (BSFC), in g/kWh
CO2MassFlwRate Carbon dioxide emission mass flow, in kg/s
COMassFlwRate Carbon monoxide emission mass flow, in kg/s
ExhTemp Exhaust temperature, in K
FuelMassFlwRate Fuel mass flow, in kg/s
HCMassFlwRate Hydrocarbon emission mass flow, in kg/s
NOxMassFlwRate Nitric oxide and nitrogen dioxide emissions mass flow, in

kg/s
PMMassFlwRate Particulate matter emission mass flow, in kg/s

Nonfiring motor data is collected at different engine speeds, without fuel
consumption.

 Mapped CI Lookup Tables as Functions of Engine Torque and Speed

5-59

Nonfiring Data Description
Torque Engine torque command, in Nm
EngSpd Engine speed, in rpm
AirMassFlwRate Air mass flow, in kg/s

2 In the Select Sheet dialog box, select the data that you want to calibrate. For
example, select Firing Data.

3 Optionally, use the Data Editor filter the data. After you have filtered the data, close
the Data Editor.

4 In the Model Browser, select Fit Models. In the Fit Models dialog box, in the
Template pane, select the template.

For example, to fit the firing data in the spreadsheet, select MappedEngine-Torque.
Do not change the default responses and inputs.

5 Model Quickstart

5-60

5 Review the model fits.

To review the response models, in the tree, select the top level.

 Mapped CI Lookup Tables as Functions of Engine Torque and Speed

5-61

To review the response surfaces, in the tree, select the response.

Open CAGE Project
To open the project, in the CAGE Case Studies pane:

1 Select CI Mapped Engine - Torque Input.

5 Model Quickstart

5-62

2 Click Open Example.

The project includes these tables.

Name Descriptio
n

Table

f_air Air mass
flow, in kg/s

 Mapped CI Lookup Tables as Functions of Engine Torque and Speed

5-63

Name Descriptio
n

Table

f_eff Engine
brake-
specific fuel
consumptio
n (BSFC), in
g/kWh

5 Model Quickstart

5-64

Name Descriptio
n

Table

f_co2 Carbon
dioxide
emission
mass flow,
in kg/s

 Mapped CI Lookup Tables as Functions of Engine Torque and Speed

5-65

Name Descriptio
n

Table

f_co Carbon
monoxide
emission
mass flow,
in kg/s

5 Model Quickstart

5-66

Name Descriptio
n

Table

f_texh Exhaust
temperature
, in K

f_fuel Fuel mass
flow, in kg/s

 Mapped CI Lookup Tables as Functions of Engine Torque and Speed

5-67

Name Descriptio
n

Table

f_hc Hydrocarbo
n emission
mass flow,
in kg/s

5 Model Quickstart

5-68

Name Descriptio
n

Table

f_nox Nitric oxide
and
nitrogen
dioxide
emissions
mass flow,
in kg/s

 Mapped CI Lookup Tables as Functions of Engine Torque and Speed

5-69

Name Descriptio
n

Table

f_pm Particulate
matter
emission
mass flow,
in kg/s

5 Model Quickstart

5-70

Name Descriptio
n

Table

f_brake Engine
torque
command,
in Nm

Use CAGE to Import and Replace Models
Use the project to import and replace existing models with new models.

1 In CAGE, select File > Import > Model. If you do not have a model open, the model
browser opens. Select a model.

2 If your current project has two or more test plans, the Import Models dialog box
prompts you to merge compatible models. Select No.

3 The Import Models dialog box prompts you to Replace, Skip, or Create new
models. Select Replace.

 Mapped CI Lookup Tables as Functions of Engine Torque and Speed

5-71

After you import and replace the existing models, the Import Models wizard opens the
Update Tables dialog box. You can use the Update Table dialog box to rerun optimizations
and feature fills to update the tables with the new models.

5 Model Quickstart

5-72

Review and Export Tables
1 In CAGE, review the calibrated tables.
2 To export the tables, select File > Export > Calibration > All Items. Use the

Export to parameter to specify the format. To export so that you can use the data for
the Powertrain Blockset mapped engine blocks, select Simulink Model
Workspace. The Model-Based Calibration Toolbox saves the mapped engine table
and breakpoint data to the model workspace.

See Also
Mapped CI Engine

More About
• “Data Manipulation”
• “Assess High-Level Model Trends”
• “Assess One-Stage Models”
• “Generate Mapped CI Engine from a Spreadsheet” (Powertrain Blockset)

 See Also

5-73

Mapped SI Lookup Tables as Functions of Engine Torque
and Speed

The Model-Based Calibration Toolbox includes a project and template that you can use to
generate calibrated spark-ignition (SI) lookup tables as a function of engine torque and
speed. Use the tables in the Powertrain Blockset Mapped SI Engine block.

Use Test Plan Template to Fit Models
1 In the Model Browser, to open the data, select Import Data. Navigate to the

spreadsheet that contains the data.

For example, open matlab\toolbox\mbc\mbctraining\SiEngineData.xlsx.

The spreadsheet contains firing and motor data collected at different engine torques
and speeds.

Firing Data Description
Torque Engine torque, in Nm
EngSpd Engine speed, in rpm
AirMassFlwRate Air mass flow, in kg/s.
BSFC Engine brake-specific fuel consumption (BSFC), in g/kWh
CO2MassFlwRate Carbon dioxide emission mass flow, in kg/s
COMassFlwRate Carbon monoxide emission mass flow, in kg/s
ExhTemp Exhaust temperature, in K
FuelMassFlwRate Fuel mass flow, in kg/s
HCMassFlwRate Hydrocarbon emission mass flow, in kg/s
NOxMassFlwRate Nitric oxide and nitrogen dioxide emissions mass flow, in

kg/s
PMMassFlwRate Particulate matter emission mass flow, in kg/s

Nonfiring motor data is collected at different engine speeds, without fuel
consumption.

5 Model Quickstart

5-74

Nonfiring Data Description
Torque Engine torque command, in Nm
EngSpd Engine speed, in rpm
AirMassFlwRate Air mass flow, in kg/s

2 In the Select Sheet dialog box, select the data that you want to calibrate. For
example, select Firing Data.

3 Optionally, use the Data Editor filter the data. After you have filtered the data, close
the Data Editor.

4 In the Model Browser, select Fit Models. In the Fit Models dialog box, in the
Template pane, select the template.

For example, to fit the firing data in the spreadsheet, select MappedEngine-Torque.
Do not change the default responses and inputs.

 Mapped SI Lookup Tables as Functions of Engine Torque and Speed

5-75

5 Review the model fits.

To review the response models, in the tree, select the top level.

5 Model Quickstart

5-76

To review the response surfaces, in the tree, select the response.

Open CAGE Project
To open the project, in the CAGE Case Studies pane:

1 Select SI Mapped Engine - Torque Input.
2 Click Open Example.

The project includes these tables.

 Mapped SI Lookup Tables as Functions of Engine Torque and Speed

5-77

Name Descriptio
n

Table

f_air Air mass
flow, in kg/s

f_eff Engine
brake-
specific fuel
consumptio
n (BSFC), in
g/kWh

5 Model Quickstart

5-78

Name Descriptio
n

Table

f_co2 Carbon
dioxide
emission
mass flow,
in kg/s

f_co Carbon
monoxide
emission
mass flow,
in kg/s

 Mapped SI Lookup Tables as Functions of Engine Torque and Speed

5-79

Name Descriptio
n

Table

f_texh Exhaust
temperature
, in K

5 Model Quickstart

5-80

Name Descriptio
n

Table

f_fuel Fuel mass
flow, in kg/s

f_hc Hydrocarbo
n emission
mass flow,
in kg/s

 Mapped SI Lookup Tables as Functions of Engine Torque and Speed

5-81

Name Descriptio
n

Table

f_nox Nitric oxide
and
nitrogen
dioxide
emissions
mass flow,
in kg/s

5 Model Quickstart

5-82

Name Descriptio
n

Table

f_pm Particulate
matter
emission
mass flow,
in kg/s

 Mapped SI Lookup Tables as Functions of Engine Torque and Speed

5-83

Name Descriptio
n

Table

f_brake Engine
torque
command,
in Nm

Use CAGE to Import and Replace Models
Use the project to import and replace existing models with new models.

1 In CAGE, select File > Import > Model. If you do not have a model open, the model
browser opens. Select a model.

2 If your current project has two or more test plans, the Import Models dialog box
prompts you to merge compatible models. Select No.

3 The Import Models dialog box prompts you to Replace, Skip, or Create new
models. Select Replace.

5 Model Quickstart

5-84

After you import and replace the existing models, the Import Models wizard opens the
Update Tables dialog box. You can use the Update Table dialog box to rerun optimizations
and feature fills to update the tables with the new models.

 Mapped SI Lookup Tables as Functions of Engine Torque and Speed

5-85

Review and Export Tables
1 In CAGE, review the calibrated tables.
2 To export the tables, select File > Export > Calibration > All Items. Use the

Export to parameter to specify the format. To export so that you can use the data for
the Powertrain Blockset mapped engine blocks, select Simulink Model
Workspace. The Model-Based Calibration Toolbox saves the mapped engine table
and breakpoint data to the model workspace.

See Also
Mapped SI Engine

More About
• “Data Manipulation”
• “Assess High-Level Model Trends”
• “Assess One-Stage Models”
• “Generate Mapped CI Engine from a Spreadsheet” (Powertrain Blockset)

5 Model Quickstart

5-86

Design of Experiment

6

Design of Experiments

Why Use Design of Experiment?
With today's ever-increasing complexity of models, design of experiment has become an
essential part of the modeling process. The Design Editor within the Model-Based
Calibration Toolbox product is crucial for the efficient collection of engine data. Dyno-cell
time is expensive, and the savings in time and money can be considerable when a careful
experimental design takes only the most useful data. Dramatically reducing test time is
growing more and more important as the number of controllable variables in more
complex engines is growing. With increasing engine complexity, the test time increases
exponentially.

The traditional method of collecting large quantities of data by holding each factor
constant in turn until all possibilities have been tested is an approach that quickly
becomes impossible as the number of factors increases. A full factorial design (that is,
testing for torque at every combination of speed, load, air/fuel ratio, and exhaust gas
recirculation on a direct injection gasoline engine with stratified combustion capability) is
not feasible for newer engines. Simple calculation estimates that, for recently developed
engines, to calibrate in the traditional way would take 99 years!

With a five-factor experiment including a multiknot spline dimension and 20 levels in each
factor, the number of points in a full factorial design quickly becomes thousands, making
the experiment prohibitively expensive to run. The Design Editor solves this problem by
choosing a set of experimental points that allow estimation of the model with the
maximum confidence using just a fraction of the number of experimental runs; for the
preceding example just 100 optimally chosen runs is more than enough to fit the model.
Obviously, this approach can be advantageous for any complex experimental design, not
just engine research.

The Design Editor offers a systematic, rigorous approach to the data collection stage.
When you plan a sequence of tests to be run on an example engine, you can base your
design on engineering expertise and existing physical and analytical models. During
testing, you can compare your design with the latest data and optimize the remaining
tests to get maximum benefit.

The Design Editor provides prebuilt standard designs to allow a user with a minimal
knowledge of the subject to quickly create experiments. You can apply engineering
knowledge to define variable ranges and apply constraints to exclude impractical points.
You can increase modeling sophistication by altering optimality criteria, forcing or

6 Design of Experiment

6-2

removing specific design points, and optimally augmenting existing designs with
additional points.

Design Styles
The Design Editor provides the interface for building experimental designs. You can make
three different styles of design: classical, space-filling, and optimal.

Space-filling designs are better when there is low system knowledge. In cases where you
are not sure what type of model is appropriate, and the constraints are uncertain, space-
filling designs collect data in such as a way as to maximize coverage of the factors' ranges
as quickly as possible.

Optimal designs are best for cases with high system knowledge, where previous studies
have given confidence on the best type of model to be fitted, and the constraints of the
system are well understood.

Classical designs (including full factorial) are very well researched and are suitable for
simple regions (hypercube or sphere). Engines have complex constraints and models
(high-order polynomials and splines).

You can augment any design by adding points. Working in this way allows new
experiments to enhance the original, rather than simply being a second attempt to gain
the necessary knowledge.

Create Examples Using the Design Editor
Follow these steps to construct space-filling, optimal, and classical designs.

1 Choose a model to design an experiment for, enter the Design Editor, and construct
an space-filling design. Then construct and apply two different constraints to this
design and view the results. Often you would design constraints before constructing a
design, but for the purposes of this tutorial you make constraints last so you can view
the effects on your design.

2 Create an optimal design.
3 After you create designs, use the displays and tools to examine the properties of the

design, save the design, and make changes.
4 Create a classical design, and use the Prediction Error Variance Viewer to compare it

with the optimal design. You can also use the Design Evaluation tool to view all
details of any design.

 Design of Experiments

6-3

See Also

Related Examples
• “Set Up a Model and Create a Design” on page 6-5
• “Create a Constrained Space-Filling Design” on page 6-7
• “View Design Displays” on page 6-12
• “Apply Constraints” on page 6-7
• “Use the Prediction Error Variance Viewer” on page 6-14

More About
• “Design of Experiments”

6 Design of Experiment

6-4

Set Up a Model and Create a Design

Set Up Model Inputs
You must first specify model inputs for which to design an experiment.

1 Start the Model Browser part of the toolbox by typing mbcmodel at the MATLAB
command line.

2 From the startup project node view, in the Common Tasks pane, click Design
experiment.

The New Test Plan dialog box appears.
3

Click the Two-Stage test plan icon in the Template pane. A two-stage model
fits a model to data with a hierarchical structure.

4 There is only one input to the global model by default. Click the up arrow button to
increase the Number of factors setting to 3.

5 Change the symbols of the three input factors to N, L, and A.
6 Click OK to dismiss the dialog box.

The Model Browser displays the test plan diagram with your specified model inputs.

Open the Design Editor
In the test plan view, in the Common Tasks pane, click Design experiment.

The Design Editor window appears.

Alternatively, to open the Design Editor, you can also use either of the following methods:

• Right-click the global model in the diagram and choose Design Experiment, as
shown.

• You can also access the Design Editor by selecting the menu item TestPlan > Design
Experiment.

 Set Up a Model and Create a Design

6-5

Create a New Design
1

Click the button in the toolbar or select File > New. A new node called appears.
2 The new node is automatically selected. An empty Design Table appears (or any view

you last used in the Design Editor) because you have not yet chosen a design. For this
example you create an optimal design for the default global model.

You can change the model for which you are designing an experiment from within the
Design Editor window by selecting Edit > Model.

3 Rename the new node Space Fill (you can edit the names by clicking again on a
node when it is already selected, or by pressing F2, as when selecting to rename in
Windows Explorer).

6 Design of Experiment

6-6

Create a Constrained Space-Filling Design
Space-filling designs should be used when there is little or no information about the
underlying effects of factors on responses. For example, they are most useful when you
are faced with a new type of engine, with little knowledge of the operating envelope.
These designs do not assume a particular model form. The aim is to spread the points as
evenly as possible around the operating space. These designs literally fill out the n-
dimensional space with points that are in some way regularly spaced. These designs can
be especially useful with nonparametric models such as radial basis functions (a type of
neural network).

1 In the Design Editor, with the new design selected, select Design > Space Filling >
Design Browser, or click the Space Filling Design button on the toolbar.

2 Leave the default Sobol Sequence in the Design type list, and the default Number
of points.

3 Use the Preview tabs to view 2-D and 3-D previews.
4 Click OK to calculate the space-filling design and return to the main Design Editor.

Apply Constraints
In many cases, designs might not coincide with the operating region of the system to be
tested. For example, a conventional stoichiometric AFR automobile engine normally does
not operate with high exhaust gas recirculation (EGR) in a region of low speed (n) and
low load (l). You cannot run 15% EGR at 800 RPM idle with a homogeneous combustion
process. There is no point selecting design points in impractical regions, so you can
constrain the candidate set for test point generation. Only optimal designs have candidate
sets of points; classical designs have set points, and space-filling designs distribute points
between the coded values of (1, -1).

You would usually set up constraints before making designs. Applying constraints to
classical and space-filling designs simply removes points outside the constraint.
Constraining the candidate set for optimal designs ensures that design points are
optimally chosen within the area of interest only.

Designs can have any number of geometric constraints placed upon them. Each
constraint can be one of four types: an ellipsoid, a hyperplane, a 1-D lookup table, or a 2-
D lookup table.

To add a constraint to your currently selected design:

 Create a Constrained Space-Filling Design

6-7

1 Select Edit > Constraints from the Design Editor menus.
2 The Constraints Manager dialog appears. Click Add.

The Constraint Editor dialog with available constraints appears. Leave the default 1D
Table in the Constraint type list.

3 You can select the appropriate factors to use. For this example, choose speed (N) and
air/fuel ratio (A) for the X and Y factors.

4 Move the large dots (click and drag them) to define a boundary. The Constraint Editor
should look something like the following.

5 Click OK.

Your new constraint appears in the Constraint Manager list box. Click OK to return
to the Design Editor. A dialog appears because there are points in the design that fall
outside your newly constrained candidate set.

6 Click Continue to remove the points outside the constraint. Note that fixed points
are not deleted by this process.

6 Design of Experiment

6-8

Plot the 2-D projection of the hypercube, and observe the effects of the new
constraint on the shape of the design, as shown in the preceding example.

7 Right-click the display pane to reach the context menu, and select Current View >
3D Constraints.These views are intended to give some idea of the region of space
that is currently available within the constraint boundaries.

8 Return to the Constraint Editor, choose Edit > Constraint, and click Add in the
Constraint Manager.

9 Add an ellipsoid constraint. Choose Ellipsoid from the drop-down menu of
constraint types.

 Create a Constrained Space-Filling Design

6-9

Enter 0 as the value for the L diagonal in the table, as shown. This will leave L
unconstrained (a cylinder). The default ellipsoid constraint is a sphere. To constrain a
factor, if you want a radius of r in a factor, enter 1/(r^2). For this example, leave the
other values at the defaults. Click OK to apply the constraint.

10 Click OK, click OK again in the Constraint Manager, and click Continue to remove
design points outside the new candidate set (or Replace if you are constraining an
optimal design). Examine the new constraint 3-D constraints plot.

Both constraints are applied to this design.

See Also

Related Examples
• “Design of Experiments” on page 6-2
• “View Design Displays” on page 6-12

6 Design of Experiment

6-10

More About
• “Design of Experiments”

 See Also

6-11

View Design Displays
In the Design Editor, after you create a design, it shows the Design Table view of the
design or other views if you previously viewed designs. In the context menu, available by
right-clicking on the title bar, you can change the view of the design to 1-D, 2-D, 3-D, 4-D,
and pairwise design projections, 2-D and 3-D constraint views, and the table view (also
under the View menu). This menu also allows you to split the display either horizontally
or vertically so that you simultaneously have two different views on the current design.
You can also use the toolbar buttons to do this. The split can be merged again. After
splitting, each view has the same functionality; that is, you can continue to split views
until you have as many as you want. When you click a view, its title bar becomes blue to
show it is the active view.

The currently available designs are displayed on the left in a tree structure.

Display Options

The Design Editor can display multiple design views at once, so while working on a design
you can keep a table of design points open in one corner of the window, a 3-D projection
of the constraints below it and a 2-D or 3-D plot of the current design points as the main
plot.

The current view and options for the current view are available either through the context
menu or the View menu on the Design Editor window.

1 Change the main display to 3-D Projection view.
2 You can rotate the projection with click-drag mouse movement. View your design in

several projections (singly, or simultaneously by dividing the pane) by using the right-
click context menu in the display pane.

See Also

Related Examples
• “Design of Experiments” on page 6-2
• “Create a Constrained Space-Filling Design” on page 6-7
• “Use the Prediction Error Variance Viewer” on page 6-14

6 Design of Experiment

6-12

More About
• “Design of Experiments”

 See Also

6-13

Use the Prediction Error Variance Viewer

Introducing the Prediction Error Variance Viewer
A useful measure of the quality of a design is its prediction error variance (PEV). The PEV
hypersurface is an indicator of how capable the design is in estimating the response in
the underlying model. A bad design is either not able to fit the chosen model or is very
poor at predicting the response. The Prediction Error Variance Viewer is only available for
linear models. The Prediction Error Variance Viewer is not available when designs are
rank deficient; that is, they do not contain enough points to fit the model. Optimal designs
attempt to minimize the average PEV over the design region.

With an optimal design selected, select Tools > Prediction Error Variance Viewer.

6 Design of Experiment

6-14

The default view is a 3-D plot of the PEV surface.

This shows where the response predictions are best. This example optimal design predicts
well in the center and the middle of the faces (one factor high and the other midrange),
but in the corners the design has the highest error. Look at the scale to see how much

 Use the Prediction Error Variance Viewer

6-15

difference there is between the areas of higher and lower error. For the best predictive
power, you want low PEV (close to zero).

You can examine PEV for designs and models. The two are related in this way:

Accuracy of model predictions (model PEV)=Design PEV * MSE (Mean Square Error in
measurements).

You can think of the design PEV as multiplying the errors in the data. The smaller the
PEV, the greater the accuracy of your final model.

Try the other display options.

• The View menu has many options to change the look of the plots.
• You can change the factors displayed in the 2-D and 3-D plots. The pop-up menus

below the plot select the factors, while the unselected factors are held constant. You
can change the values of the unselected factors using the buttons and edit boxes in the
Input factors list, top left.

• The Movie option shows a sequence of surface plots as a third input factor's value is
changed. You can change the factors, replay, and change the frame rate.

• You can change the number, position, and color of the contours on the contour plot
with the Contours button, as shown.

6 Design of Experiment

6-16

Add Points Optimally
You can further optimize the optimal design by returning to the Optimal Design dialog,
where you can delete or add points optimally or at random. The most efficient way is to
delete points optimally and add new points randomly — these are the default algorithm
settings. Only the existing points need to be searched for the most optimal ones to delete
(the least useful), but the entire candidate set has to be searched for points to add
optimally.

To strengthen the current optimal design:

1 Return to the Design Editor window.
2 Click the Optimal Design button in the toolbar again to reenter the dialog, and add 60

more points. Keep the existing points (which is the default).
3 Click OK and watch the optimization progress, then click Accept when the number

of iterations without improvement starts increasing.

 Use the Prediction Error Variance Viewer

6-17

4 View the improvements to the design in the main displays.
5 Once again select Tools > Prediction Error Variance Viewer and review the plots

of prediction error variance and the new values of optimality criteria in the optimality
frame (bottom left). The shape of the PEV projection might not change dramatically,
but note the changes in the scales as the design improves. The values of D, V, and G
optimality criteria will also change (you have to click Calculate to see the values).

To see more dramatic changes to the design, return to the Design Editor window (no need
to close the Prediction Error Variance Viewer).

1 Split the display so you can see a 3-D projection at the same time as a Table view.
2 You can sort the points to make it easier to select points in one corner. For example,

to pick points where N is 100 and L is 0,

a Select Edit > Sort Points.
b Choose to sort by N only (reduce the number of sort variables to one) and click

OK.
3 Choose Edit > Delete Point.
4 Using the Table and 3-D views as a guide, in the Delete Points dialog, pick six points

to remove along one corner. Add the relevant point numbers to the delete list by
clicking the add (>) button.

5 Click OK to remove the points. See the changes in the main design displays and look
at the new Surface plot in the Prediction Error Variance Viewer (see the example
following).

6 Design of Experiment

6-18

See Also

Related Examples
• “Design of Experiments” on page 6-2
• “Create a Constrained Space-Filling Design” on page 6-7

More About
• “Design of Experiments”

 See Also

6-19

Data Editor for Modeling

7

Manipulate Data for Modeling
For empirical engine modeling in the Model Browser, first load, process, and select data
for modeling. This tutorial shows you how to use the Data Editor for loading data,
creating variables, and creating constraints for that data.

You can load data from files (Microsoft® Excel® files, MATLAB files, text files) and from
the MATLAB workspace. You can merge data in any of these forms with previously loaded
data sets to produce a new data set. Test plans can use only one data set, so the merging
function allows you to combine records and variables from different files in one model.

You can define new variables, apply filters to remove unwanted data, and apply test notes
to filtered tests. You can store and retrieve these user-defined variables and filters for any
data set, and you can store plot settings. You can change and add records and apply test
groupings, and you can match data to designs. You can also write your own data loading
functions.

To get started, follow these workflow steps.

Workflow Steps Description
“View and Edit the Data” on page 7-2 Use the Data Editor displays to investigate

your data.
“Create New Variables and Filters” on page
7-6

Define your own new variables and filters to
remove unwanted data.

“Store and Import Variables, Filters, and
Plot Preferences” on page 7-7

Store plot preferences, user-defined
variables, filters, and test notes.

“Define Test Groupings” on page 7-8 Use the Define Test Groupings dialog box to
group your data.

“Match Data to Experimental Designs” on
page 7-10

Use an example project to match
experimental data to designs.

View and Edit the Data
Viewing Data

You can split the views to display several plots at once. Use the right-click context menus,
the toolbar buttons, or the View menu to split views. You can choose 2-D plots, 3-D plots,
multiple data plots, data tables, and tabs showing summary, statistics, variables, filters,

7 Data Editor for Modeling

7-2

test filters, and test notes. You can use test notes to investigate problem data and decide
whether to remove some points before modeling.

Using Notes to Sort Data for Plotting

1 Right-click a view and select Current View > Multiple Data Plot.
2 Right-click the new view and select Add Plot.

The Plot Variables Setup dialog box appears.
3 Select spark and click to add to the X Variable box, then select tq and click to

add to the Y Variable box. Click OK to create the plot.
4 Click in the Tests list to select a test to plot (or Shift-click, Ctrl-click, or click and

drag to select multiple tests).
5 Select Tools > Test Notes.
6 In The Test Note Editor, enter mean(tq)<10 in the top edit box to define the tests to

be noted, and enter Low torque in the Test Note edit box. Leave the note color at
the default and click OK.

7 Click the Test Notes tab to view your note definition.
8 In the Test Selector pane on the left, observe that all the tests that satisfy the

condition mean(tq)<10 show Low torque next to them. Click the column header to
sort the tests that meet the note condition to the top or bottom of the list.

9 Now create more views.

• Right-click a view and select Split View > Data Table.
• Right-click a view and select Split View > 3D Plot.

10 In the Test Selector pane, click particular tests with the Low torque note.

Notice that when you select a test here, the same test is plotted in the multiple data
plots, the 3D data plot, and highlighted in the data table. You can use the notes in this
way to easily identify problem tests and decide whether to remove them.

Removing Outliers and Problem Tests

1 Click a point on the Multiple Data Plots view.

The point is outlined in red on the plot, and highlighted in the data table. You can
remove points you have selected as outliers by selecting Tools > Remove Data (or
use the keyboard shortcut Ctrl+A). Select Tools > Restore Data (or use the

 Manipulate Data for Modeling

7-3

keyboard shortcut Ctrl+Z) to open a dialog box where you can choose to restore any
or all removed points.

You can remove individual points as outliers, or you can remove records or entire
tests with filters.

2 For example, after examining all the Low torque noted tests, you could decide to
filter them out.

a Select Tools > Test Filters.
b In the Test Filter Editor, enter mean(tq)>10 to keep all tests where the mean

torque is greater than 10, and click OK.
c Click the Test Filters tab and observe the new test filter results show it is

successfully applied and the number of records removed.
3 To view removed data in the table view, right-click and select Allow Editing.

Removed records are red. To view removed data in the 2-D and Multiple Data Plots,
select Properties and select the box Show removed data.

Reordering and Editing Data

To change the display, right-click a 2-D plot and select Properties. You can alter grid and
plot settings including lines to join the data points.

Reorder X Data in the Plot Properties dialog box can be useful when record order does
not produce a sensible line joining the data points. For an illustration of this:

1 Ensure that you are displaying a 2-D plot. You can right-click any plot and select
Current Plot > 2-D Plot, or use the context menu split commands to add new views.

2 Right-click a 2-D plot and select Properties and choose solid from the Data
Linestyle drop-down menu. Click OK.

7 Data Editor for Modeling

7-4

3 Choose afr for the y-axis.
4 Choose Load for the x-axis.
5 Select test 590. Use the test controls contained within the 2-D plot. The Tests pane

on the left applies to other views: tables and 3-D and multiple data plots.

6 Right-click and select Properties and choose Reorder X Data. Click OK.

This command replots the line from left to right instead of in the order of the records,
as shown.

7 Right-click and select Split Plot > Data Table to split the currently selected view
and add a table view. You can select particular test numbers in the Tests pane on the

 Manipulate Data for Modeling

7-5

left of the Data Editor. You can right-click to select Allow Editing, and then you can
double-click cells to edit them.

Create New Variables and Filters
Adding New Variables

You can add new variables to the data set.

1 Select Tools > Variables, or click the toolbar button.

In the Variable Editor, you can define new variables in terms of existing variables.
Define the new variable by writing an equation in the edit box at the top.

2 Define a new variable called POWER that is defined as the product of two existing
variables, tq and n, by entering POWER=tq*n, as seen in the example following. You
can also double-click variable names and operators to add them, which can be useful
to avoid typing mistakes in variable names, which must be exact including case.

3 Click OK to add this variable to the current data set.
4 View the new variable in the Data Editor in the Variables tab at the top. You can also

now see 7 + 1 variables in the summary tab.

Applying a Filter

A filter is a constraint on the data set you can use to exclude some records. You use the
Filter Editor to create filters.

1 Choose Tools > Filters, or click the toolbar button.

In the Filter Editor, define the filter using logical operators on the existing variables.
2 Keep all records with speed (n) greater than 1000. Type n (or double-click the

variable n), then type >1000.
3 Click OK to impose this filter on the current data set.
4 View the new filter in the Data Editor in the Filters tab at the top. Here you can see a

list of your user-defined filters and how many records the new filter removes. You can
also now see 141/270 records in the summary tab and a red section in the bar
illustrating the records removed by the filter.

7 Data Editor for Modeling

7-6

Sequence of Variables

You can change the order of user-defined variables in the Variable Editor list using the up
and down arrow buttons.

Select Tools > Variables.

Example:

1 Define two new variables, New1 and New2. You can use the buttons to add or remove
a list item to create or delete variables in this view. Click the button to 'Add item' to
add a variable, and enter the definitions shown.

Notice that New2 is defined in terms of New1. New variables are added to the data in
turn and hence New1 must appear in the list before New2, otherwise New2 is not well-
defined.

2 Change the order by clicking the down arrow in the Variable Editor to produce this
erroneous situation. Click OK to return to the Data Editor and in the Variables tab
you can see the error message that there is a problem with the variable.

3 Use the arrows to order user-defined variables in legitimate sequence.

Deleting and Editing Variables and Filters

You can delete user-defined variables and filters.

Example:

1 To delete the added variable New1, select it in the Variables tab and press the Delete
key.

2 You can also delete variables in the Variable Editor by clicking the Remove Item
button.

Similarly, you can delete filters by selecting the unwanted filter in the Filters tab and
using the Delete key.

Store and Import Variables, Filters, and Plot Preferences
You can store and import plot preferences, user-defined variables, filters, and test notes
so they can be applied to other data sets loaded later in the session, and to other sessions.

 Manipulate Data for Modeling

7-7

• Select Tools > Import Expressions
•

Click the toolbar button

The Data Editor remembers your plot type settings and when reopened displays the same
types of views. You can also store your plot layouts to save the details of your Multiple
Data Plots.

In the Import Variables, Filters, and Editor Layout dialog box, use the toolbar buttons to
import variables, filters, and plot layouts. Import from other data sets in the current
project, or from MBC project files, or from files exported from the Data Editor.

To use imported expressions in your current project, select items in the lists and click the
toolbar button to apply in the data editor.

To store expressions in a file, in the Data Editor, select Tools > Export Expressions and
select a file name.

Define Test Groupings
The Define Test Groupings dialog box collects records of the current data object into
groups. These groups are referred to as tests.

The dialog box is accessed from the Data Editor in either of these ways:

• Using the menu Tools > Test Groups
•

Using the toolbar button

When you enter the dialog box using the holliday data, a plot is displayed as the
variable logno is automatically selected for grouping tests.

Select another variable to use in defining groups within the data.

1 Select n in the Variables list.
2

Click the button to add the variable (or double-click n).

The variable n appears in the list view on the left. You can now use this variable to
define groups in the data. The maximum and minimum values of n are displayed. The
Tolerance is used to define groups: on reading through the data, when the value of n

7 Data Editor for Modeling

7-8

changes by more than the tolerance, a new group is defined. You change the
Tolerance by typing directly in the edit box.

You can define additional groups by selecting another variable and choosing a
tolerance. Data records are grouped by n or by this additional variable changing
outside their tolerances.

3 Clear the box Group by for logno. Notice that variables can be plotted without
being used to define groups.

4
Add load to the list by selecting it on the right and clicking .

5 Change the load tolerance to 0.01 and watch the test grouping change in the plot.
6 Clear the Group By check box for load. Now this variable is plotted without being

used to define groups.

The plot shows the scaled values of all variables in the list view (the color of the
tolerance text corresponds to the color of data points in the plot). Vertical pink bars
show the tests (groups). You can zoom the plot by Shift-click-dragging or middle-
click-dragging the mouse; zoom out again by double-clicking.

7 Select load in the list view (it becomes highlighted in blue) and remove it from the
list by clicking the button.

8 Double-click to add spark to the list, and clear the Group By check box. Select
logno as the only grouping variable.

It can be helpful to plot the local model variable (in this case spark) to check that you
have the correct test groupings. The plot shows the sweeps of spark values in each
test while speed (n) is kept constant. Speed is only changed between tests, so it is a
global variable. Try zooming in on the plot to inspect the test groups; double-click to
reset.

One-stage data defines one test per record, regardless of any other grouping. This
is required if the data is to be used in creating one-stage models.

Sort records before grouping allows you to reorder records in the data set.
Otherwise, the groups are defined using the order of records in the original data
object.

Show original test groups displays the original test groupings if any were defined.

Test number variable contains a list of all the variables in the current data set. Any
of these could be selected to number the tests.

 Manipulate Data for Modeling

7-9

9 make sure that logno is selected for the Test number variable.

This changes how the tests are displayed in the rest of the Model Browser. Test
number can be a useful variable for identifying individual tests in Model Browser and
Data Editor views (instead of 1,2,3...) if the data was taken in numbered tests and you
want access to that information during modeling.

If you chose none from the Test number variable list, the tests would be numbered
1,2,3, and so on, in the order in which the records appear in the data file. With logno
chosen, you see tests in the Data Editor listed as 586, 587 etc.

Every record in a test must share the same test number to identify it, so when you
are using a variable to number tests, the value of that variable is taken in the first
record in each test.

Test numbers must be unique, so if any values in the chosen variable are the same,
they are assigned new test numbers for the purposes of modeling (this does not
change the underlying data, which retains the correct test number or other variable).

10 Click OK to accept the test groupings defined and close the dialog box.

In the Data Editor summary tab, view the number of tests.

The number of records shows the number of values left (after filtration) of each
variable in this data set, followed by the original number of records. The color coded
bars also display the number of records removed as a proportion of the total number.
The values are collected into several tests; this number is also displayed. The
variables show the original number of variables plus user-defined variables.

Match Data to Experimental Designs
Introducing Matching Data to Designs

You can use an example project to illustrate the process of matching experimental data to
designs.

Experimental data is unlikely to be identical to the desired design points. You can use the
Design Match view in the Data Editor to compare the actual data collected with your
experimental design points. Here you can select data for modeling. If you are interested
in collecting more data, you can update your experimental design by matching data to
design points to reflect the actual data collected. You can then optimally augment your

7 Data Editor for Modeling

7-10

design (using the Design Editor) to decide which data points it would be most useful to
collect, based on the data obtained so far.

You can use an iterative process: make a design, collect some data, match that data with
your design points, modify your design accordingly, then collect more data, and so on. You
can use this process to optimize your data collection process to obtain the most robust
models possible with the minimum amount of data.

1 To see the data matching functions, in the Model Browser, select File > Open
Project and browse to the file Data_Matching.mat in the matlab\toolbox\mbc
\mbctraining folder.

2 Click the Spark Sweeps node in the model tree to change to the test plan view.

Here you can see the two-stage test plan with model types and inputs set up. The
global model has an associated experimental design (which you could view in the
Design Editor). You are going to use the Data Editor to examine how closely the data
collected so far matches to the experimental design.

3
Click the Edit Data button () in the toolbar.

The Data Editor appears.
4 You need a Design Match view to examine design and data points. Right-click a view

in the Data Editor and select Current View > Design Match.

In the Design Match, you can see colored areas containing points. These are
“clusters” where the matching algorithm selects closely matching design and data
points.

Tolerance values (derived initially from a proportion of the ranges of the variables)
are used to determine if any data points lie within tolerance of each design point.
Data points that lie within tolerance of any design point are matched to that cluster.
Data points that fall inside the tolerance of more than one design point form a single
cluster containing all those design and data points. If no data points lie within
tolerance of a design point, it remains unmatched and no cluster is plotted.

 Manipulate Data for Modeling

7-11

Notice the shape formed by overlapping clusters. The example shown outlined in pink
is a single cluster formed where a data point lies within tolerance of two design
points.

On this plot, you can see other cleared points that appear to be contained within this
cluster. You track points through other factor dimensions using the axis controls to
see where points are separated beyond tolerance.

Tolerances and Cluster Information

1 To edit tolerance values, select Tolerances in the context menu.

The Tolerance Editor appears. Here you can change the size of clusters in each
dimension. Observe that the LOAD tolerance value is 100. This accounts for the
elongated shape (in the LOAD dimension) of the clusters in the current plot, because
this tolerance value is a high proportion of the total range of this variable.

7 Data Editor for Modeling

7-12

2 Click the LOAD edit box and enter 20, as shown. Click OK.

Notice the change in shape of the clusters in the Design Match view.

3 Shift click (center-click) and drag to zoom in on an area of the plot, as shown. You can
double-click to return to the full-size plot.

 Manipulate Data for Modeling

7-13

4 Click a cluster to select it. Selected points or clusters are outlined in pink. If you click
and hold, you can inspect the values of global variables at the selected points (or for
all data and design points if you click a cluster). You can use this information to help
you decide on suitable tolerance values if you are trying to match points.

5 Notice that the Cluster Information list shows the details of all data and design
points contained in the selected cluster. You use the check boxes here to select or
exclude data or design points. Click different clusters to see various points. The list
shows the values of global variables at each point, and which data and design points
are within tolerance of each other. Your selections here determine which data to use
for modeling, and which design points are replaced by actual data points.

Understanding Clusters

If you are not interested in collecting more data, then there is no need to make sure that
the design is modified to reflect the actual data.

However, if you want your new design (called Actual Design) to accurately reflect what
data has been obtained so far, for example to collect more data, then the cluster matching
is important. All data points with a selected check box are added to the new Actual
Design, except those in red clusters. The color of clusters indicates what proportion of
selected points it contains as follows:

• Green clusters have equal numbers of selected design and selected data points. The
data points will replace the design points in the Actual Design.

7 Data Editor for Modeling

7-14

The proportion of selected points determines the color; excluded points (with cleared
check boxes) have no effect. Your check box selections can change cluster color.

• Blue clusters have more data points than design points. All the data points will replace
the design points in the Actual Design.

• Red clusters have more design points than data points. These data points will not be
added to your design as the algorithm cannot choose which design points to replace,
so you must manually make selections to deal with red clusters if you want to use
these data points in your design.

If you do not care about the Actual Design (for example, if you do not intend to
collect more data) and you are just selecting data for modeling, then you can ignore
red clusters. The data points in red clusters are selected for modeling.

1 Right-click the Design Match and select Select Unmatched Data. Notice that the
remaining unmatched data points appear in the list. Here you can use the check
boxes to select or exclude unmatched data in the same way as points within clusters.

2 Select a cluster, then use the drop-down menu to change the Y-Axis factor to INJ.
Observe the selected cluster now plotted in the new factor dimensions of SPEED and
INJ.

You can use this method to track points and clusters through the dimensions. This
can give you a good idea of which tolerances to change to get points matched.
Remember that points that do not form a cluster might appear to be perfectly
matched when viewed in one pair of dimensions; you must view them in other
dimensions to find out where they are separated beyond the tolerance value. You can
use this tracking process to decide whether you want particular pairs of points to be
matched, and then change the tolerances until they form part of a cluster.

3 Clear the Equal Data and Design check box in the Design Match view. You control
what is plotted using these check boxes.

 Manipulate Data for Modeling

7-15

This removes the green clusters from view, as shown. These clusters are matched;
you are more likely to be interested in unmatched points and clusters with uneven
numbers of data and design points. Removing the green clusters allows you to focus
on these points of interest. If you want your new Actual Design to accurately
reflect your current data, your aim is to get as many data points matched up to
design points as possible; that is, as few red clusters as possible.

4 Clear the check box for More Data than Design. You might also decide to ignore
blue clusters, which contain more data points than design points. These design points
are replaced by all data points within the cluster. An excess of data points is unlikely
to be a concern.

However, blue clusters might indicate that there was a problem with the data
collection at that point, and you might want to investigate why more points than
expected were collected.

7 Data Editor for Modeling

7-16

5 Select one of the remaining red clusters. Both of these have two design points within
tolerance of a single data point.

6 Choose one of the design points to match to the data point, then clear the check box
of the other design point. The cleared design point remains unchanged in the design.
The selected design point are replaced by the matched data point.

Notice that the red cluster disappears. This is because your selection results in a
cluster with an equal number of selected data and design points (a green cluster) and
your current plot does not display green clusters.

7 Repeat for the other red cluster.

Now all clusters are green or blue. There are two remaining unmatched data points.
8 Clear the Unmatched Design check box to locate the unmatched data points. Select

Unmatched Design check box again — to see design points to decide if any are
close enough to the data points.

9 Locate and zoom in on an unmatched data point. Select the unmatched data point
and a nearby design point by clicking, then use the axis drop-down menus to track
the candidate pair through the dimensions. Decide if any design points are close
enough to warrant changing the tolerance values to match the point with a design
point.

 Manipulate Data for Modeling

7-17

10 Recall that you can right-click the Design Match and select Select Unmatched
Data to display the remaining unmatched data points in the Cluster Information
list. Here you can use the check boxes to select or exclude these points. If you leave
them selected, they are added to the Actual Design.

These steps illustrate the process of matching data to designs, to select modeling data
and to augment your design based on actual data obtained. Some trial and error is
necessary to find useful tolerance values. You can select points and change plot
dimensions to help you find suitable values. If you want your new Actual Design to
accurately reflect your experimental data, you need to make choices to deal with red
clusters. Select which design points in red clusters you want to replace with the data
points. If you do not, then these data points will not be added to the new design.

When you are satisfied that you have selected all the data you want for modeling, close
the Data Editor. At this point, your choices in the Design Match view are applied to the
data set and a new design called Actual Design is created.

All data points with a selected check box are selected for modeling. Data points with
cleared check boxes are excluded from the data set. Changes are made to the existing
design to produce the new Actual Design. All selected data is added to your new
design, except those in red clusters. Selected data points that have been matched to
design points (in green and blue clusters) replace those design points.

All these selected data points become fixed design points (red in the Design Editor) and
appear as Data in Design (pink crosses) when you reopen the Data Editor.

This means that these points will not be included in clusters when matching again. These
fixed points will also not be changed in the Design Editor when you add points, though
you can unlock fixed points if you want. This can be useful if you want to optimally
augment a design, taking into account the data you have already obtained.

See Also

More About
• “Data Manipulation for Modeling”
• “Data Import and Processing”
• “Match Data to Designs”

7 Data Editor for Modeling

7-18

Tradeoff Calibration

8

Setup and Perform a Tradeoff Calibration

What Is a Tradeoff Calibration?
A tradeoff calibration is the process of filling lookup tables by balancing different
objectives.

Typically there are many different and conflicting objectives. For example, a calibrator
might want to maximize torque while restricting nitrogen oxides (NOX) emissions. It is
not possible to achieve maximum torque and minimum NOX together, but it is possible to
trade off a slight reduction in torque for a reduction of NOX emissions. Thus, a calibrator
chooses the values of the input variables that produce this slight loss in torque over the
values that produce the maximum value of torque.

This tutorial takes you through the various steps required for you to set up this tradeoff,
and then to calibrate the lookup table for it.

Setting Up a Tradeoff Calibration
Creating a Tradeoff

Start CAGE by typing

cage

at the MATLAB prompt.

Before you can calibrate the lookup tables, you must set up the calibration.

1 Select File > Open Project (or the toolbar button) to choose the
tradeoffInit.cag file, found in the matlab\toolbox\mbc\mbctraining
directory, then click OK.

The tradeoffInit.cag project contains two models and all the variables necessary
for this tutorial.

2 To create a tradeoff calibration, select File > New > Tradeoff.

This takes you to the Tradeoff view. You need to add tables and display models to the
tradeoff, which are described step by step in the following sections:

8 Tradeoff Calibration

8-2

• “Adding Tables to a Tradeoff Calibration” on page 8-5.
• “Displaying the Models” on page 8-6 describes how you display the models of

torque and NOX emissions.

 Setup and Perform a Tradeoff Calibration

8-3

1. Open the project file

2. Add a new
 tradeoff

3. Add a new table 3. Select item to fill table. 5. Display the models

8 Tradeoff Calibration

8-4

Adding Tables to a Tradeoff Calibration

The models of torque and NOX are in the current session. You must add the lookup table
to calibrate.

Both models have five inputs. The inputs for the torque and NOX models are

• Exhaust gas recycling (EGR)
• Air/fuel ratio (AFR)
• Spark angle
• Speed
• Load

For this tutorial, you are interested in the spark angle over the range of speed and load.

To generate a lookup table for the spark angle,

1 Click (Add New Table) in the toolbar. This opens the Table Setup dialog.

2 Enter Spark as the table Name.
3 Check that N is the X input and L is the Y input (these are selected automatically as

the first two variables in the current Variable Dictionary).
4 Enter 10 as the size of the load axis (Rows).
5 Enter 13 as the size of the speed axis (Columns).
6 Click Select to open the dialog Select Filling Item.

 Setup and Perform a Tradeoff Calibration

8-5

Select the radio button Display variables, then select SPK to fill the table and click
OK.

7 Click OK to close the Table Setup dialog.

Before you can perform the calibration, you must display the models.

Displaying the Models

For this tutorial, you are comparing values of the torque and NOX models. Thus, you need
to display these models.

To display both models,

• Click Add Model to Display List in the toolbar twice. This will move both available
models into the Display list.

• Alternatively, Shift-click to select both models in the Available Models list and
click to include both models in the current display. In this case you want to include
all available models. You can click to select particular models in the list to display.

The Display Models pane following shows both models selected for display.

8 Tradeoff Calibration

8-6

You can now calibrate the tradeoff.

Performing the Tradeoff Calibration
Process Overview

You now fill the lookup table for spark angle by trading off gain in torque for reduction in
NOX emissions.

The method that you use to fill the lookup table is

• Obtain the maximum possible torque.
• Restrict NOX to below 250 g/hr at any operating point.

To perform the tradeoff calibration, follow the instructions in the next four sections:

1 Check the normalizers. on page 8-9
2 Set values for the other variables, AFR and EGR. on page 8-10
3 Fill key operating points with values for spark angle on page 8-12.
4 Fill the table by extrapolation on page 8-16.

Once you have completed the calibration, you can export the calibration for use in the
electronic control unit.

 Setup and Perform a Tradeoff Calibration

8-7

2. Set values for the other variables, either individually
 for each operating point or in the Variable Directory.

1. Check the
normalizers.

5. Export the
calibration.

3. Trade off torque and NOX to find
values of spark to fill key operating
points in the table.

4. Fill the table by
extrapolation.

8 Tradeoff Calibration

8-8

Checking the Normalizers

A normalizer is the axis of the lookup table (which is the collection of breakpoints). The
breakpoints of the normalizers are automatically spaced over the ranges of speed and
load. These define the operating points that form the cells of the tradeoff table.

Expand the Tradeoff tree by clicking the plus sign in the display, so you can see the Spark
table and its normalizers Speed and Load. Click to highlight either normalizer to see the
normalizer view. A tradeoff calibration does not compare the model and the table directly,
so you cannot space the breakpoints by reference to the model.

 Setup and Perform a Tradeoff Calibration

8-9

Setting Values for Other Variables

At each operating point, you must fill the values of the spark table. Both of the models
depend on spark, AFR (labeled A, in the session), and EGR (labeled E in the session). You
could set the values for AFR and EGR individually for each operating point in the table,
but for simplicity you will set constant values for these model inputs.

To set constant values of AFR and EGR for all operating points,

1 Click Variable Dictionary in the Data Objects pane.
2 Click A and edit the Set Point to 14.3, the stoichiometric constant, and press Enter.
3 Click E and change the Set Point to 0 and press Enter.

You have set these values for every operating point in your tradeoff table. You can
now fill the spark angle lookup table. The process is described next.

4 Click Tradeoff in the Processes pane to return to the tradeoff view.
5 Highlight the Spark table node in the Tradeoff tree display.
6 In the lower pane, check that the value for A is 14.3, and the value for E is 0, as

shown in the following example. You leave these values unchanged for each operating
point.

For each operating point you change the values of spark to trade off the torque and NOX
objectives; that is, you search for the best value of spark that gives acceptable torque
within the emissions constraint. The following example illustrates the controls you use,
and there are step-by-step instructions in the following section.

8 Tradeoff Calibration

8-10

1. Highlight the Spark node. 2. Select operating points in
the Spark tradeoff table.

4. Leave A and E at the
set point values.

3. Change values of SPK to trade off torque
and NOX emissions at each operating point.

 Setup and Perform a Tradeoff Calibration

8-11

Filling Key Operating Points

You now fill the key operating points in the lookup table for spark angle.

The upper pane displays the lookup table, and the lower pane displays the behavior of the
torque and NOX emissions models with each variable.

The object is to maximize the torque and restrict NOX emissions to below 250 g/hr.

Determining the Value of Spark

At each operating point, the behavior of the model alters. The following display shows the
behavior of the models over the range of the input variables at the operating point
selected in the table, where speed (N) is 4500 and load (L) is 0.5. You can show
confidence intervals by selecting View > Display Confidence Intervals.

8 Tradeoff Calibration

8-12

Value of the NOX model

Value of the torque model

The top three graphs show how the torque model varies with the AFR (labeled A), the
spark angle (SPK), and the EGR (E), respectively. The lower panes show how the NOX
emissions model varies with these variables.

You are calibrating the Spark table, so the two spark (SPK) graphs are green, indicating
that these graphs are directly linked to the currently selected lookup table.

1 Select the operating point N = 4500 and L = 0.5 in the lookup table.
2 Now try to find the spark angle that gives the maximum torque and restricts NOX

emissions to below 250 g/hr. You can change the value of spark by clicking and
dragging the orange line on the SPK graphs, or by typing values into the SPK edit
box. You can change the values of any of the other tradeoff variables in the same way,
but as you have already set constant values for A and E you should not change these.

 Setup and Perform a Tradeoff Calibration

8-13

Try different values of spark and look at the resulting values of the torque and NOX
models.

3 Click to select the top SPK - TQ_Model graph (TQ_Model row, SPK column). When
selected the graph is outlined as shown in the following example.

4 Now click 'Find maximum of output' () in the toolbar. This calculates the value of
spark that gives the maximum value of torque. The following display shows the
behavior of the two models when the spark angle is 26.4458, which gives maximum
torque output.

Torque model behavior

99% Confidence interval
for the torque model

NOX model behavior

Value of spark

At this operating point, the maximum torque that is generated is 48.136 when the
spark angle is 26.4989. However, the value of NOX is 348.968, which is greater
than the restriction of 250 g/hr. Clearly you have to look at another value of spark
angle.

8 Tradeoff Calibration

8-14

5 Click and drag the orange bar to change to a lower value of spark. Notice the change
in the resulting values of the torque and NOX models.

6 Enter 21.5 as the value of SPK in the edit box at the bottom of the SPK column.

The value of the NOX emissions model is now 249.154. This is within the restriction,
and the value of torque is 47.2478.

At this operating point, this value of 21.5 degrees is acceptable for the spark angle
lookup table, so you want to apply this point to your table.

7 Press Ctrl+T or click (Apply table filling values) in the toolbar to apply that value
to the spark table.

This automatically adds the selected value of spark to the table and turns this cell
yellow. It is blue when selected, yellow if you click elsewhere. Look at the table
legend to see what this means: yellow cells have been added to the extrapolation
mask, and the tick mark indicates you saved this input value by applying it from the
tradeoff. You can use the View menu to choose whether to display the legend.

8 Now repeat this process of finding acceptable values of spark at four more operating
points listed in the table following. In each case,

• Select the cell in the spark table at the specified values of speed and load.
• Enter the value of spark given in the table (the spark angles listed all satisfy the

requirements).
• Press Ctrl+T or click (Apply table filling values) in the toolbar to apply that

value to the spark table.

Speed, N Load, L Spark Angle, SPK
2500 0.3 25.75
3000 0.8 10.7
5000 0.7 8.2
6000 0.2 41.3

After you enter these key operating points, you can fill the table by extrapolation. This is
described in the next section.

 Setup and Perform a Tradeoff Calibration

8-15

Filling the Table by Extrapolation

When you have calibrated several key operating points, you can produce a smooth
extrapolation of these values across the whole table.

When you apply the value of the spark angle to the lookup table, the selected cell is
automatically added to the extrapolation mask. This is why the cell is colored yellow. The
extrapolation mask is the set of cells that are used as the basis for filling the table by
extrapolation.

Click in the toolbar to fill the table by extrapolation.

The lookup table is filled with values of spark angle.

The following figure displays the view after extrapolation over the table.

8 Tradeoff Calibration

8-16

Note Not all the points in the lookup table will necessarily fulfill the requirements of
maximizing torque and restricting the NOX emissions.

You could use these techniques to further improve the calibration and trade off torque
and NOX to find the best values for each cell in the spark table.

Exporting Calibrations

To export your table and its normalizers,

1 Select the Spark node in the branch display.

 Setup and Perform a Tradeoff Calibration

8-17

2 Select File > Export > Calibration.
3 Choose the file type you want for your calibration. For the purposes of this tutorial,

select Comma Separated Value (.csv).
4 Enter tradeoff.csv as the file name and click Save.

This exports the spark angle table and the normalizers, Speed and Load.

See Also

More About
• “Calibration Setup”
• “Tradeoff Calibration”

8 Tradeoff Calibration

8-18

Data Sets

9

Compare Calibrations To Data

Setting Up the Data Set
You can use the Data Sets view in CAGE to compare features, tables, and models with
experimental data. You can use data sets to plot the features, tables, etc., as tabular
values or as plots on a graph.

Data sets enable you to view the data at a set of operating points. You can determine the
set of operating points yourself, using Build Grid. Alternatively, you can import a set of
experimental data taken at a series of operating points. These operating points are not
the same as the breakpoints of your tables.

This tutorial takes you through the basic steps required to compare a completed feature
calibration to a set of experimental data.

Start CAGE by typing

cage

To set up the data set tutorial, you need to

1 Open an existing calibration on page 9-2.
2 Import the experimental data on page 9-3.
3 Add on page 9-4 the Torque feature to the data set.

Your data set contains all the input factors and output factors required. As the imported
data contains various operating points, this information is also included in the data set.

Opening an Existing Calibration

For this tutorial, use the file datasettut.cag, found in the matlab\toolbox\mbc
\mbctraining directory.

To open this file,

1 Select File > Open Project.
2 In the file browser, select datasettut.cag and click Open.

9 Data Sets

9-2

This opens a file that contains a complete calibrated feature with its associated
models and variables. This particular feature is a torque calibration, using a torque
table (labeled T1) and modifiers for spark (labeled T2) and air/fuel ratio (labeled T3).

3 Select File > New > Data Set to add a new data set to your session.

This automatically switches you to the Factor Information pane of the data set display.

Importing Experimental Data into a Data Set

To import data into a data set,

1 Select File > Import > Data > File.
2 In the file browser, select meas_tq_data.xls from the mbctraining directory, and

click Open.

This set of data includes six columns of data, the test cell settings for engine speed
(RPM), and the measured values of torque (tqmeas), engine speed (nmeas), air/fuel
ratio (afrmeas), spark angle (spkmeas), and load (loadmeas).

3 The Data Set Import Wizard asks which of the columns of data you would like to
import. Click Next to import them all.

The following screen asks you to associate variables in your project with data
columns in the data.

4 Highlight afr in the Project Assignments column and afrmeas in the Data
Column, then click the assign button, shown.

5 Repeat this to associate load with loadmeas, n with RPM, and spk with spkmeas.
The dialog box should be the same as shown.

 Compare Calibrations To Data

9-3

Assign button

6 Click Finish to close the dialog box.

Note If you need to reassign any inputs after closing this dialog you can click in
the toolbar or select Data > Assign.

Adding an Item to a Data Set

To add the Torque feature to the data set,

9 Data Sets

9-4

1 Highlight the Torque feature in the lower list of Project Expressions.
2 Select Data > Factors > Add to Data Set.

This adds two objects to the data set: Torque: Model and Torque: Strategy. These
two objects make up the Torque feature.

• Torque: Model is the model used as a reference point to calibrate the feature.
• Torque: Strategy is the values of the feature at these operating points.

When these steps are complete, the list of factors includes four input factors and four
output factors, as shown.

 Compare Calibrations To Data

9-5

Comparing the Items in a Data Set
Viewing the Data Set as a Table

By viewing the data set, you can compare experimental data with calibrations or models
in your project.

9 Data Sets

9-6

Click in the toolbar to view the data set as a table of values.

In the table, the input cells are white and the output cells are grey. Select the Torque:
Strategy column header to see the view shown. The selected column turns blue and the
column headers of the strategy's inputs (n, load, afr and spk) turn cream. Column
headers are always highlighted in this way when they are associated with the currently
selected column (such as model inputs, strategy inputs or linked columns).

In addition to viewing the columns, you can use data sets to create a column that shows
the difference between two columns:

1 Select the tqmeas and Torque: Strategy columns by using Ctrl+click.
2 Select Create Error from the right-click menu on either column header.

This creates another column that is the difference between tqmeas and Torque:
Strategy. Note that all the columns that are inputs to this new column have highlighted
headers.

 Compare Calibrations To Data

9-7

The error column is simply the difference between tqmeas and Torque: Strategy.
This provides a simple way of comparing the feature and the measured data.

Viewing the Data Set as a Plot

1 Click or select View > Plot to view the data set as a plot.

The lower pane lists all the output expressions in the data set and in the project.
2 Use Ctrl+click to select tqmeas and Torque: Strategy from the lower list.

9 Data Sets

9-8

3 Change the x-axis factor to n from the drop-down menu.

This displays the calibrated values of torque from the feature, and the measured
values of torque from the experimental data, against the test cell settings for engine
speed.

Clearly there is some discrepancy between the two.

Displaying the Error

View the error between the calibrated and measured values of torque.

 Compare Calibrations To Data

9-9

1. Select tqmeas_minus_Torque. 2. Select Absolute Relative Error
(tqmeas - Torque).

9 Data Sets

9-10

1 Select tqmeas_minus_Torque from the lower list (Output Expressions).
2 For the y-axis factor, select Absolute Relative Error (tqmeas - Torque)

from the drop-down menu.

As you can see, there seems to be no particular correlation between engine speed and the
error in the calibration.

Coloring the Display

1 Select Color by Value from the right-click menu on the graph.
2 From the Color by drop-down menu, select load.

In this display, you can see that some of the low values of load display a high error.

 Compare Calibrations To Data

9-11

Limiting the Range of the Colors

Adjust the maximum
value of the range.

Adjust the mid
value of the range.

Adjust the minimum
value of the range.

Limit range
check box

To view the colors in more detail, you can limit the range of the colors:

1 Select the Limit range box (or you could right-click the graph and select Restrict
Color to Limits).

2 Set the minimum value of the color range to be as low as possible by dragging the
minimum value down.

3 Set the maximum value of the color range to be around 0.4.

9 Data Sets

9-12

As the low values of load are causing large errors, it would be wise to reexamine the
calibration, particularly at small values of load.

Reassigning Variables
You can alter the data set by changing which variables are used for project expressions.

Instead of using the test cell settings for the engine speed (RPM), you might want to use
the measured values of engine speed (nmeas). So you have to reassign the variable n to
nmeas.

To reassign n,

1 Click or select Data > Assign.
2 In the dialog that appears, select n from the Project Assignments pane and nmeas

from the Data Columns pane.
3 Click the assign button.

 Compare Calibrations To Data

9-13

See Also

More About
• “Data Sets in CAGE”
• “Feature Calibration”

9 Data Sets

9-14

Filling Tables from Data

10

Fill Tables from Data
Setting Up a Table and Experimental Data
If you are considering a straightforward strategy, you might want to fill tables directly
from experimental data. For example, a simple torque strategy fills a lookup table with
values of torque over a range of speed and relative air charge, or load. You can use CAGE
to fill this strategy (which is a set of tables) by referring to a set of experimental data. You
can also fill tables with the output of optimizations.

This tutorial takes you through the steps of calibrating a lookup table for torque, based on
experimental data.

• This section describes the steps required to set up CAGE in order to calibrate a table
by reference to a set of data.

• “Filling the Table from the Experimental Data” on page 10-7 describes the process
of filling the lookup table.

• “Selecting Regions of the Data” on page 10-10 describes how you can select some of
the data for inclusion when you fill the table.

• “Exporting the Calibration” on page 10-12 describes how to export your completed
calibration.

Start CAGE by typing

cage

First you will set up a blank table ready for filling using experimental data or optimization
output.

The steps that you need to follow to set up the CAGE session are

1 Add the variables on page 10-2 for speed and load by importing a variable
dictionary.

2 Add a new table on page 10-3 to your session.
3 Import your experimental data on page 10-5.

Adding Variables

Before you can add tables to your session, you must add variables to associate with the
normalizers or axes.

10 Filling Tables from Data

10-2

To add a variable dictionary,

1 Select File > Import > Variable Dictionary.
2 Select table_filling_tutorial.xml from the matlab\toolbox\mbc

\mbctraining directory.

This loads a variable dictionary into your session. The variable dictionary includes the
following:

• N, the engine speed
• L, the relative air charge
• A, the air/fuel ratio (AFR)
• stoich, the stoichiometric constant

You can now add a table to your session.

Adding a New Table

You must add a table to fill.

To add a new table,

1 Select File > New > 2D table.

This opens a dialog box that asks you to specify the variable names for the
normalizers. As you can see in the dialog controls, accepting the defaults will create a
table with ten rows and ten columns with an initial value of 0 in each cell.

2 Change the number of columns to 7.
3 Select L as the variable for normalizer Y and N as the variable for normalizer X, then

click OK.

Note In CAGE, a 2-D table is defined as a table with two inputs.

CAGE takes you to the Tables view, where you can see the following.

 Fill Tables from Data

10-3

Inspecting the Values of the Normalizers

CAGE has automatically initialized the normalizers by spacing the breakpoints evenly
across the range of values for the engine speed (N) and load (L). The variable ranges are
found in the variable dictionary. Switch to the Normalizer view to inspect the normalizers.

Expand the table branch by clicking , and select NNormalizer as shown.

10 Filling Tables from Data

10-4

This displays the two normalizers for the table.

You have an empty table with breakpoints over the ranges of the engine speed and load,
which you can fill with values based on experimental data.

Importing Experimental Data

To fill a table with values based on experimental data, you must add the data to your
session. If you want to fill a table with the output of an optimization, the output appears
automatically in the Data Sets view as a new data set called
Exported_Optimization_Data when you select the Export to Data Set toolbar button.
For this tutorial you need to import some experimental data.

CAGE uses the Data Sets view to store grids of data. Thus, you need to add a data set to
your session as well.

Select File > New > Data Set to add a data set to your session. This changes the view to
the Data Set view.

You can now import experimental data into the data set:

1 Select File > Import > Data.
2 In the file browser, select meas_tq_data.csv from the matlab\toolbox\mbc

\mbctraining directory and click Open.

This set of data includes six columns of data: the test cell settings for engine speed
(RPM), and the measured values of torque (tqmeas), engine speed (nmeas), air/fuel
ratio (afrmeas), spark angle (spkmeas), and load (loadmeas).

3 This opens the Data Set Import Wizard. The first screen asks which of the columns of
data you want to import. Click Next to import them all.

The following screen asks you to associate variables in your project with data
columns in the data.

 Fill Tables from Data

10-5

4 Highlight N in the Project Assignments column and nmeas in the Data Column,
then click the assign button, shown.

5 Repeat this to associate L with loadmeas. The dialog box should be the same as the
following.

Assign button

6 Click Finish to close the dialog box.

10 Filling Tables from Data

10-6

You now have an empty table and some experimental data in your session. You are ready
to fill the table with values based on this data.

Filling the Table from the Experimental Data
You have an empty table and the experimental data in your session. You can now fill the
table with values based on your data.

The data that you have imported is a series of measured values of torque at a selection of
different operating points. These operating points do not correspond to the values of the
breakpoints that you have specified. The lookup table has a range of engine speed from
500 revolutions per minute (rpm) to 3500 rpm. The range of the experimental data is far
greater.

CAGE extrapolates the values of the experimental data over the range of your table. Then
it fills the table by selecting the torque values of the extrapolation at your breakpoints.

To fill the table with values based on the experimental data,

1 To view the Table Filler display, click (Fill Table From Data Set) in the toolbar in
the Data Sets view; or select View > Table Filler.

You can use this display to specify the table you want to fill and the factor you want to
use to fill it.

2 In the lower pane, select New_2D_Table from the Table to fill list.
3 Select tqmeas from the Factor to fill table list. This is the data that you want to use

to fill the table.
4 Select N from the x-axis factor list and L from the y-axis factor list. Your session

should be similar to the following display.

 Fill Tables from Data

10-7

A breakpoint in your
lookuptable (a cross)

An operating point from the
experimental data (a blue dot)

The upper pane displays the breakpoints of your table as crosses and the operating
points where there is data as blue dots. Data sets display the points in the

10 Filling Tables from Data

10-8

experimental data, not the values at the breakpoints. You can inspect the spread of
the data compared to the breakpoints of your table before you fill the table.

5 To view the table after it is filled, ensure that the Show table history after fill box,
at the bottom left, is selected.

6 To fill the table with values of tqmeas extrapolated over the range of the normalizers,
click Fill Table.

This opens the History dialog box, shown.

7 Click Close to close the History dialog box and return to the Table Filler display.
8 To view the graph of your table, as shown, select Data > Plot > Surface.

 Fill Tables from Data

10-9

This display shows the table filled with the experimental points overlaid as purple dots.

The table has been calibrated by extrapolating over the values of your data and filling the
values that the data predicts at your breakpoints.

Notice that the range of the table is smaller than the range of the data, as the table only
has a range from 500 rpm to 3500 rpm.

The data outside the range of the table affects the values that the table is filled with. You
can exclude the points outside the range of the table so that only points in the range that
you are interested in affect the values in the table.

Selecting Regions of the Data
You can ignore points in the data set when you fill your lookup table.

For example, in this tutorial the experimental data ranges over values that are not
included in the lookup table. You want to ignore the values of engine speed that are
greater than the range of the table.

To ignore points in the data set,

1 Select Data > Plot > Data Set. This returns you to the view of where the
breakpoints lie in relation to the experimental data.

2 To define the region that you want to include, left-click and drag the plot. Highlight
all the points that are included in your table range, as shown.

10 Filling Tables from Data

10-10

3 To fill the table based on an extrapolation over these data points only, click Fill
Table. This opens the History display again.

4 In the History display, select version 2 and 3, using Ctrl+click. The following display
shows a comparison between the table filled with two different extrapolations.

 Fill Tables from Data

10-11

5 Click Close to close the History viewer.
6 Select Data > Plot > Surface to view the surface again.

The display of the surface now shows the table filled only by reference to the data points
that are included in the range of the table.

You have filled a lookup table with values taken from experimental data.

Exporting the Calibration
To export the calibration,

1 To highlight the table that you want to export, you must first click Tables, shown.

10 Filling Tables from Data

10-12

2 Highlight the New_2D_Table.
3 Select File > Export > Calibration > Selected Item.
4 Choose the type of file you want to save your calibrations as. For the purposes of this

tutorial, select Comma Separated Value (.csv).
5 Enter table_filling_tutorial.csv as the file name and click Save.

This exports the calibration.

 Fill Tables from Data

10-13

Optimization and Automated
Tradeoff

11

Optimization and Automated Tradeoff

Import Models to Optimize
To open the CAGE browser and set up your optimization:

1 Start the CAGE Browser part of the Model-Based Calibration Toolbox product by
typing

cage
2 If you have not imported models, click Import Models. After you have imported

models, you can optimize them.

For any optimization, you need one or more models. You can run an optimization at a
single point, or you can supply a set of points to optimize. The steps required are:

a Import a model or models.
b Set up a new optimization.

3 If you have imported models, click Optimization in the Processes pane.

You can use the Optimization view to set up, run, view, and export optimizations. You
must also set up optimizations here in order to use them for automated tradeoff.

When you first open the Optimization view both panes are blank until you create an
optimization. After you set up your optimizations, the left Optimization pane shows a
tree hierarchy of your optimizations, and the right hand panes display details of the
optimization selected in the tree, as with other CAGE processes.

The following tutorial guides you through this process to evaluate this optimization
problem: MaxTQ (SPK, N, L).

That is, find the maximum of the torque model (TQ) as a function of spark (SPK), engine
speed (N), and load (L). You will use the NOXFLOW model to constrain these optimization
problems.

11 Optimization and Automated Tradeoff

11-2

For any optimization, you need to load one or more models. You can use the CAGE Import
tool to import models from Model Browser projects. For this tutorial you can load a CAGE
project from the mbctraining directory that contains two models for the optimization
problems. Load the project containing models to optimize as follows:

1 Select File > Open Project to choose the tradeoffInit.cag file, found in the
matlab\toolbox\mbc\mbctraining directory, then click OK.

The tradeoffInit.cag project contains two models and all the variables necessary
for this tutorial.

2 CAGE displays the Models view. You can view your models at any time by clicking the
Models button in the Data Objects pane.

Observe that the project you have opened contains two models: TQ_Model and
NOXFLOW_Model. In this tutorial you use these models to optimize torque values
subject to emissions constraints.

3 To view the items in the Variable Dictionary, click the Variable Dictionary button in
the Data Objects pane.

The Variable Dictionary view appears, displaying the variables, constants, and
formulas in the current project. The project already has the relevant variables
defined, so you do not need to import a variable dictionary. Note that the variables
have ranges and set points defined.

See Also

More About
• “Calibration Setup”

 See Also

11-3

• “Import Models and Calibration Items Using CAGE Import Tool”

11 Optimization and Automated Tradeoff

11-4

Model-Based Calibration Toolbox
Examples

12

Loading and Modifying Data
This example shows how to load and modify data using Model-Based Calibration
Toolbox™ command-line interface. Data can be loaded from files (Excel® files, MATLAB®
files, text files) and from the MATLAB® workspace. You can define new variables, apply
filters to remove unwanted data, and apply test notes to filtered tests.

Load Data from Excel®

Load data from holliday.xlsx.

dataFile = fullfile(matlabroot, 'toolbox', 'mbc', 'mbctraining', 'holliday_data.mat');
data = mbcmodel.CreateData(dataFile);
get(data)
data.SignalNames

 Name: 'holliday_data'
 NumRecords: 270
 NumSignals: 7
 NumTests: 27
 RecordsPerTest: [1x27 double]
 IsEditable: 1
 IsBeingEdited: 0
 Owner: []
 SignalNames: [7x1 string]
 SignalUnits: [7x1 string]
 Filters: [0x0 struct]
 TestFilters: [0x0 struct]
 UserVariables: [0x0 struct]

ans =

 7x1 string array

 "afr"
 "egr"
 "load"
 "n"
 "spark"
 "logno"
 "tq"

12 Model-Based Calibration Toolbox Examples

12-2

Plot Data

You can use the SignalName as an input to the Value method. Plot the first 5 tests.

x = zeros(10,5);
y = zeros(10,5);
name = cell(1,5);
% Collect the data as columns to pass to plot.
for tn = 1:5
 x(:,tn) = data.Value('spark', tn);
 y(:,tn) = data.Value('tq', tn);
 name{tn} = sprintf('Test %d', tn);
end
plot(x, y, 'x-');
legend(name);
grid on
xlabel(sprintf('%s [%s]', 'spark', data.SignalUnits{5}));
ylabel(sprintf('%s [%s]', 'tq', data.SignalUnits{5}));
title('tq vs. spark');

 Loading and Modifying Data

12-3

Remove Outliers and Problem Tests

Add a filter to keep tests where the mean torque is greater than 10. A filter is a constraint
on the data set you can use to exclude some tests (test filter) or records (filter). You must
call BeginEdit before making changes. The data is only updated when you call
CommitEdit.

numberOfTestsBefore = data.NumberOfTests;
data.BeginEdit;
data.AddTestFilter('mean(tq)>10');
data.CommitEdit;
numberOfTestsAfter = data.NumberOfTests;
fprintf('Removed %d tests.\n', numberOfTestsBefore-numberOfTestsAfter);

12 Model-Based Calibration Toolbox Examples

12-4

Removed 9 tests.

Add New Variable

You can add new variables to the data set.

data.BeginEdit;
data.AddVariable('POWER=tq*n');
data.CommitEdit;
signalNamesBefore = data.SignalNames
% POWER is now in the list of SignalNames, and can be used to define other
% new variables.
data.BeginEdit;
data.AddVariable('POWER_SQUARED=POWER^2');
data.CommitEdit;
signalNamesAfter = data.SignalNames

signalNamesBefore =

 8x1 string array

 "afr"
 "egr"
 "load"
 "n"
 "spark"
 "logno"
 "tq"
 "POWER"

signalNamesAfter =

 9x1 string array

 "afr"
 "egr"
 "load"
 "n"
 "spark"
 "logno"
 "tq"
 "POWER"

 Loading and Modifying Data

12-5

 "POWER_SQUARED"

Apply a Filter

Add a filter to keep only records where speed is greater than 1000.

numberOfRecordsBefore = data.NumberOfRecords;
data.BeginEdit;
data.AddFilter('n>1000');
data.CommitEdit;
numberOfRecordsAfter = data.NumberOfRecords;
fprintf('Removed %d records.\n', numberOfRecordsBefore-numberOfRecordsAfter);

Removed 38 records.

12 Model-Based Calibration Toolbox Examples

12-6

Gasoline Case Study Design of Experiment
This example shows how to design an experiment for the gasoline case study problem
using the command-line interface to Model-Based Calibration Toolbox™. The gasoline
case study describes how to systematically develop a set of optimal steady-state engine
calibration tables using Model-Based Calibration Toolbox™ software.

Create Project and Test Plan

project = mbcmodel.CreateProject('GasolineCaseStudy');
% Define Inputs for test plan
localInputs = mbcmodel.modelinput(...
 'Symbol', 'S',...
 'Name', 'SPARK',...
 'Range', [0 50]);
globalInputs = mbcmodel.modelinput(...
 'Symbol', {'N','L','ICP','ECP'},...
 'Name', {'SPEED','LOAD','INT_ADV','EXH_RET'},...
 'Range', {[500 6000],[0.0679 0.9502],[-5 50],[-5 50]});
% Create test plan
TP = CreateTestplan(project, {localInputs,globalInputs});

Create Space-Filling Design

CreateDesign defaults to creating a design for the outer (global) level.

sfDesign = CreateDesign(TP, ...
 'Type', 'Latin Hypercube Sampling',...
 'Name', 'Space Filling');

Add Boundary Constraints

Load boundary constraints from another project file and add to design.

otherProject = mbcmodel.LoadProject([matlabroot,'\toolbox\mbc\mbctraining\Gasoline_project.mat']);
boundaryConstraints = otherProject.Testplans(1).BoundaryModel('global');
% Design constraints are specified as an array of
% mbcdoe.designconstraint objects.
sfDesign.Constraints = boundaryConstraints;

Change Selection Criteria of LHS Design

Get the design properties and change the SelectionCriteria to 'minimax'. Putting the
changed properties back into the design causes the design to update.

 Gasoline Case Study Design of Experiment

12-7

designGenerator = sfDesign.Generator;
% Use "minimax"
designGenerator.SelectionCriteria = 'minimax'
sfDesign.Generator = designGenerator;

designGenerator =

Latin Hypercube Sampling design generator

Get Required Number of Points for a Constrained Design.

As in the Design Editor, when a design has constraints it is hard to achieve the number of
points you require. In the design editor you try different numbers of points and
regenerate. At the command line you can use the ConstrainedGenerate method to do
this.

Generate Design

Use ConstrainedGenerate to make a 200 point design.

sfDesign = ConstrainedGenerate(sfDesign, 200, 'UnconstrainedSize', 800, 'MaxIter',10);

% How did we do?
finalNumberOfPoints = sfDesign.NumberOfPoints
% How many points did we need in total?
totalNumberOfPoints = sfDesign.Generator.NumberOfPoints

finalNumberOfPoints =

 203

totalNumberOfPoints =

 852

Generate Design for Parked Cam Phasers

Make another design for some points with parked cam phasers. These points are
important because you need an accurate model when cams are parked.

parkedCamsDesign = sfDesign.CreateDesign('Name', 'Parked');
parkedCamsDesign = ConstrainedGenerate(parkedCamsDesign, 10, 'UnconstrainedSize', 40, 'MaxIter',10);

12 Model-Based Calibration Toolbox Examples

12-8

% Explicitly set ECP and ICP to 0 - this changes the 'Type' to 'Custom'
designTypeBefore = parkedCamsDesign.Type
parkedCamsDesign.Points(:,3:4) = 0;
designTypeAfter = parkedCamsDesign.Type
% Merge with first design to create a new design
mainDesign = Merge(sfDesign, parkedCamsDesign);
mainDesign.Name = 'Main Design';

designTypeBefore =

 'Latin Hypercube Sampling'

designTypeAfter =

 'Custom'

Plot Design Points

Scatter2D is a method of mbcdoe.design.

designPoints = mainDesign.Points;
inputs = mainDesign.Inputs;
subplot(2,1,1)
Scatter2D(mainDesign, 1, 2);
subplot(2,1,2)
Scatter2D(mainDesign, 3, 4);

 Gasoline Case Study Design of Experiment

12-9

Add the Designs to the Test Plan

Testplans have a Design property that is a cell array (one cell for each stage). Here you
add the designs to the 2nd stage.

TP.Design{2} = [sfDesign parkedCamsDesign mainDesign];
get(TP)

 Data: []
 Levels: 2
 InputSignalNames: [5x1 string]
 InputsPerLevel: [1 4]
 DefaultModels: {[1x1 mbcmodel.localmodel] [1x1 mbcmodel.linearmodel]}
 Responses: [0x0 mbcmodel.abstractnode]

12 Model-Based Calibration Toolbox Examples

12-10

 Boundary: []
 Inputs: {[1x1 mbcmodel.modelinput] [4x1 mbcmodel.modelinput]}
 Designs: {[1x0 mbcdoe.design] [1x3 mbcdoe.design]}
 BestDesign: {[] []}
 Name: 'Two-Stage'
 Project: [1x1 mbcmodel.project]

Set the BestDesign

Testplans also have a BestDesign property (also a cell array). Set the Best Design for the
2nd stage.

TP.BestDesign{2} = mainDesign

TP =

 testplan with properties:

 Data: []
 Levels: 2
 InputSignalNames: [5x1 string]
 InputsPerLevel: [1 4]
 DefaultModels: {[1x1 mbcmodel.localmodel] [1x1 mbcmodel.linearmodel]}
 Responses: [0x0 mbcmodel.abstractnode]
 Boundary: []
 Inputs: {[1x1 mbcmodel.modelinput] [4x1 mbcmodel.modelinput]}
 Designs: {[1x0 mbcdoe.design] [1x3 mbcdoe.design]}
 BestDesign: {[] [1x1 mbcdoe.design]}
 Name: 'Two-Stage'
 Project: [1x1 mbcmodel.project]

Create Validation Design

Make another space-filling design for collecting validation data.

validationDesign = sfDesign.CreateDesign('Name', 'Validation');
validationDesign = ConstrainedGenerate(validationDesign, 25, 'UnconstrainedSize', 100, 'MaxIter',10);

% Add the parked cams point.
validationDesign.Points(end+1,:) = [3500 0.5 0 0];
% Add this to testplan as well - when you add one design only, using
% AddDesign is more convenient. By default this adds the design to 2nd

 Gasoline Case Study Design of Experiment

12-11

% stage.
% Note: alternatively, you could add the design to TP.Design{2} directly.
TP.AddDesign(validationDesign);
% The list of designs for the 2nd stage
allDesigns = TP.Design{2}

allDesigns =

 1x4 design array with properties:

 Style
 Type
 NumPoints
 NumInputs
 Name
 Points
 PointTypes
 Inputs
 Generator
 Constraints
 Model

12 Model-Based Calibration Toolbox Examples

12-12

Using Constraints
This example shows how to create and apply constraints to a design using Model-Based
Calibration Toolbox™ command-line interface.

Create a Design

Create a Full Factorial design, because this will show the constraint boundaries as clearly
as possible. Create the design from inputs. For simplicity, only 2 inputs (speed and load)
are used.

inputs = mbcmodel.modelinput(...
 'Symbol', {'N','L'},...
 'Name', {'SPEED','LOAD'},...
 'Range', {[500 6000],[0.0679 0.9502]});

design = CreateDesign(inputs, 'Type', 'Full Factorial');
design = Generate(design, 'NumberOfLevels', [50 50]);
% design has a Constraints property, initially this is empty.
constraints = design.Constraints

constraints =

Create a Linear Constraint
cLinear = CreateConstraint(design, 'Type', 'Linear');
cLinear.A = [-2.5e-4, 1];
cLinear.b = 0.25;
cLinear
design.Constraints = cLinear;
design = Generate(design);

cLinear =

Linear design constraint: -0.00025*N + 1*L <= 0.25

Show Constraint

Plot the points to show the linear constraint.

Scatter2D(design, 1, 2);
title('Linear Constraint');

 Using Constraints

12-13

Create a 1D Table Constraint

cTable1d = CreateConstraint(design, 'Type', '1D Table');
cTable1d.Table = [0.9 0.5];
cTable1d.Breakpoints = [500 6000];
cTable1d
design.Constraints = cTable1d;
design = Generate(design);

cTable1d =

1D Table design constraint: L(N) <= Lmax

12 Model-Based Calibration Toolbox Examples

12-14

Show Constraint

Plot the points to show the 1D Table constraint.

Scatter2D(design, 1, 2);
title('1D Table Constraint ');

Combining Constraints

Constraints is an array of the constraints to apply.

design.Constraints = [cLinear, cTable1d];
constraints = design.Constraints
design = Generate(design);

 Using Constraints

12-15

constraints =

Linear design constraint: -0.00025*N + 1*L <= 0.25
1D Table design constraint: L(N) <= Lmax

Show Constraint

Plot the points to show both constraints.

Scatter2D(design, 1, 2);
title('Linear and 1D Table Constraint ');

12 Model-Based Calibration Toolbox Examples

12-16

Local Designs
This example shows how to use the command-line functionality to generate local designs
at each global operating point. This particular example shows how you can produce local
maps for a diesel engine calibration.

Create Project and Test Plan

Speed (N) and fuel (F) are global inputs. Injection (soi), fuel pressure (fuelpress), variable
geometry turbo rack position (grackmea) and exhaust gas recirculation (EGR) are local
inputs.

project = mbcmodel.CreateProject('DieselMulti');

% Define Inputs for test plan
LocalInputs = mbcmodel.modelinput('Symbol',{'S','P','G','E'},...
 'Name',{'soi','fuelpress','grackmea','egrlift'},...
 'Units',{'deg','MPa','ratio','mm'},...
 'Range',{[-9 3],[60 160],[0.2 0.9],[0.5 5]});
GlobalInputs = mbcmodel.modelinput('Symbol',{'N','F'},...
 'Name',{'measrpm','basefuelmass'},...
 'Units',{'rpm','mg/stroke'},...
 'Range',{[1600 2200],[20 200]});
% create test plan
TP = CreateTestplan(project, {LocalInputs,GlobalInputs});

Global Design

Generate a 15 point Latin Hypercube Sampling (LHS) design for the global inputs.

globalDesign = TP.CreateDesign(2, 'Type', 'Latin Hypercube Sampling');
% Fuel constraint: Maximum 200 at 1600 rpm, 175 at 2200 rpm
C = globalDesign.CreateConstraint('Type','1D Table');
% set up the 1D Table constraint
C.InputFactor = 'N';
C.Breakpoints = [1600 2000];
C.TableFactor = 'F';
C.Table = [200 175];
% assign constraint to design
globalDesign.Constraints = C;
% generate a 15 point design
globalDesign = Generate(globalDesign, 15);
% set as best design in test plan
TP.BestDesign{2} = globalDesign;

 Local Designs

12-17

Create a Local Design for Each Global Point

For each global point, adjust limits for fuel pressure and grackmea, and generate a 30
point LHS design.

% create a local design
localDesign = TP.CreateDesign(1,'Type','Latin Hypercube Sampling');
localDesignGenerator = localDesign.Generator;
localDesignGenerator.NumberOfPoints = 30;
DList = mbcdoe.design.empty(0, 1);
for i = 1:globalDesign.NumberOfPoints;
 GlobalPoint = globalDesign.Points(i,:);
 speed = GlobalPoint(1);
 % fuel pressure limits dependent on speed
 f = (speed-1600)/(2200-1600);
 % note because you use the Limits property to specify the input range
 % you get LHS designs with exactly 30 points.
 localDesignGenerator.Limits(2,:) = (1-f)*[90 120] + f*[110 160];
 % grackmea limits dependent on speed
 localDesignGenerator.Limits(3,:) = (1-f)*[0.2 0.4] + f*[0.6 0.9];

 % set design properties and generate local design
 localDesign.Generator = localDesignGenerator;

 % Make design name which reflects the global point
 localDesign.Name = sprintf('Test %2d (%s=%4.0f,%s=%3.0f)', i,...
 GlobalInputs(1).Symbol,GlobalPoint(1),....
 GlobalInputs(2).Symbol,GlobalPoint(2));

 % Plot Design
 Scatter2D(localDesign);

 DList(i) = localDesign;
end

% assign list of local designs to test plan
TP.Designs{1} = DList;
% List of local designs
localDesigns = TP.Designs{1}

localDesigns =

 1x14 design array with properties:

12 Model-Based Calibration Toolbox Examples

12-18

 Style
 Type
 NumPoints
 NumInputs
 Name
 Points
 PointTypes
 Inputs
 Generator
 Constraints
 Model

 Local Designs

12-19

Optimal Designs
This example shows how to create an optimal design for a polynomial model using Model-
Based Calibration Toolbox™ command-line interface.

Create the Model

You need a model to create an optimal design.

inputs = mbcmodel.modelinput(...
 'Symbol', {'N','L','A'},...
 'Name', {'n','load','afr'},...
 'Range', {[1000 5000],[0.2 0.65],[10.9 14.65]});

model = mbcmodel.CreateModel('Polynomial', inputs);
model.Properties.Order = [2 2 2];

Create a V-optimal Design

Create a design for the polynomial model.

optimalDesign = CreateDesign(model,...
 'Type', 'V-optimal',...
 'Name', 'Optimal Design');

Generate Design

Create a CandidateSet to use.

CandidateSet = optimalDesign.CreateCandidateSet('Type', 'Grid');
CandidateSet.NumberOfLevels = [21 21 21];
% Pass in Generator properties to Generate
optimalDesign = Generate(optimalDesign,...
 'NumberOfPoints', 30,...
 'CandidateSet', CandidateSet,...
 'MaxIterations', 200,...
 'NoImprovement', 50);

Alternative Way to Generate Design

Instead of passing generator settings to Generate, you can modify the design's
generator. The two methods are equivalent, because assigning the generator back to the
design causes a call to Generate.

12 Model-Based Calibration Toolbox Examples

12-20

anotherOptimalDesign = CreateDesign(model, 'Type', 'V-optimal', 'Name', 'Another Optimal Design');
optimalGenerator = anotherOptimalDesign.Generator;
optimalGenerator.NumberOfPoints = 30;
optimalGenerator.CandidateSet.Type = 'Grid';
optimalGenerator.CandidateSet.NumberOfLevels = [21 21 21];
optimalGenerator.MaxIterations = 200;
optimalGenerator.NoImprovement = 50;

Setting the Generator causes Generate to be called.

anotherOptimalDesign.Generator = optimalGenerator;

Optimal Criteria

criteria = OptimalCriteria(optimalDesign);
fprintf('Optimality Criteria for "%s":\nV = %.3f\nD = %.3f\nA = %.3f\nG = %.3f\n', optimalDesign.Name, criteria);

Optimality Criteria for "Optimal Design":
V = 0.181
D = 2.492
A = 1.050
G = 0.552

Pairwise Plots Of Design

Plot each input against the others.

subplot(2,2,1);
Scatter2D(optimalDesign, 1, 2);

subplot(2,2,3);
Scatter2D(optimalDesign, 1, 3);

subplot(2,2,4);
Scatter2D(optimalDesign, 2, 3);

 Optimal Designs

12-21

12 Model-Based Calibration Toolbox Examples

12-22

Gasoline Case Study
This example shows how to automatically generate an mbcmodel project for the gasoline
case study using the command-line tools in Model-Based Calibration Toolbox™ .

Requires DIVCP_Main_DoE_Data.xls from mbctraining folder.

Create a New mbcmodel Project

project = mbcmodel.CreateProject;

Load Data into Project

• Group data into tests and add some filters.
• Add filters to remove bad data.
• Remove tests which do not have sufficient data to fit local models.

datafile = fullfile(mbcpath, 'mbctraining', 'DIVCP_Main_DoE_Data.mat');
data = CreateData(project, datafile);

BeginEdit(data);

% Group data by test number GDOECT.
DefineTestGroups(data, 'GDOECT', 0.5, 'GDOECT', false);
% Get rid of data which is probably unstable.
AddFilter(data, 'RESIDFRAC < 35');
AddFilter(data, 'AFR > 14.25');
% Get rid of the tests that are too small.
AddTestFilter(data, 'length(BTQ) > 4');

% Commit the changes to the project.
CommitEdit(data);

Build Test Plan

Define Inputs for test plan.

LocalInputs = mbcmodel.modelinput('Symbol','S',...
 'Name','SPARK',...
 'Range',[0 50]);
GlobalInputs = mbcmodel.modelinput('Symbol',{'N','L','ICP','ECP'},...
 'Name',{'SPEED','LOAD','INT_ADV','EXH_RET'},...
 'Range',{[500 6000],[0.0679 0.9502],[-5 50],[-5 50]});

 Gasoline Case Study

12-23

% Create test plan.
testplan = CreateTestplan(project, {LocalInputs,GlobalInputs});
% Attach data to the test plan.
AttachData(testplan, data);

Build Boundary Models

Create a global boundary model. CreateBoundary does not add the boundary model to the
tree.

B = CreateBoundary(testplan.Boundary.Global,'Star-shaped');
% Add boundary model to the test plan. The boundary model is fitted when it
% is added to the boundary model tree. The boundary model is included in
% the best boundary model for the tree by default.
% All inputs are used in the boundary model by default.
B = Add(testplan.Boundary.Global,B);

% Now make a boundary model using only speed and load and add to the
% boundary tree.
B.ActiveInputs = [true true false false];
B = Add(testplan.Boundary.Global,B);
% Look at the global boundary tree.
testplan.Boundary.Global

ans =

 Tree with properties:

 Data: [189x4 double]
 Models: {[1x1 mbcboundary.Model] [1x1 mbcboundary.Model]}
 BestModel: [1x1 mbcboundary.Boolean]
 InBest: [1 1]
 TestPlan: [1x1 mbcmodel.testplan]

Build Responses

Build response models for torque, exhaust temperature and residual fraction * Use a local
polynomial spline model for torque. * Use a local polynomial model with datum for
exhaust temperature and residual fraction

LocalTorque = mbcmodel.CreateModel('Local Polynomial Spline',1);
LocalTorque.Properties.LowOrder = 2;
% Use the default global model.

12 Model-Based Calibration Toolbox Examples

12-24

GlobalModel = testplan.DefaultModels{2};
CreateResponse(testplan,'BTQ',LocalTorque,GlobalModel,'Maximum');
% make exhaust temperature and residual fraction models
LocalPoly = mbcmodel.CreateModel('Local Polynomial with Datum',1);
CreateResponse(testplan,'EXTEMP',LocalPoly,GlobalModel,'Linked');
CreateResponse(testplan,'RESIDFRAC',LocalPoly,GlobalModel,'Linked');

Remove Local Outliers

Remove data if abs(studentized residuals) > 3. Note that a different process was used in
the project Gasoline_project to decide which outliers to remove.

TQ_response = testplan.Responses(1);
numTests = TQ_response.NumberOfTests;
LocalBTQ = TQ_response.LocalResponses;
for tn = 1:numTests
 % Find observations with studentized residuals greater than 3
 studentRes = DiagnosticStatistics(LocalBTQ, tn, 'Studentized residuals');
 potentialOut = abs(studentRes)> 3;
 if any(potentialOut)
 % Don't update response feature models until end of loop
 RemoveOutliersForTest(LocalBTQ, tn, potentialOut , false);
 end
 % get local model for test and look at summary statistics
 mdl = ModelForTest(LocalBTQ,tn);
 if ~strcmp(mdl.Status,'Not fitted')
 LocalStats = SummaryStatistics(mdl);
 end
end

Update response features.

UpdateResponseFeatures(LocalBTQ);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 12).

Remove Points Where MBT<0 or MBT>60
knot = LocalBTQ.ResponseFeatures(1);
PointsToRemove = knot.DoubleResponseData<0 | knot.DoubleResponseData>60;
knot.RemoveOutliers(PointsToRemove);

Create Alternative Response Feature Models

Make a list of candidate models and select the best based on AICc.

 Gasoline Case Study

12-25

• Quadratic
• Cubic
• RBF with a range of centers
• Polynomial-RBF with a range of centers

Get the base model. You use this to create the other models.

rf = LocalBTQ.ResponseFeatures(1);
BaseModel = rf(1).Model;

Make a quadratic model that uses Minimize PRESS to fit, and add it to the list.

m = BaseModel.CreateModel('Polynomial');
m.Properties.Order = [2 2 2 2];
m.FitAlgorithm = 'Minimize PRESS';
mlist = {m};

Make a cubic model and add it to the list.

m.Properties.Order = [3 3 3 3];
m.Properties.InteractionOrder = 2;
mlist{2} = m;

Make RBF models with a range of centers. The maximum number of centers is set in the
center selection algorithm.

m = BaseModel.CreateModel('RBF');
Centers = [50 80];
Start = length(mlist);
mlist = [mlist cell(size(Centers))];
for i = 1:length(Centers)
 m.FitAlgorithm.WidthAlgorithm.NestedFitAlgorithm.CenterSelectionAlg.MaxCenters = Centers(i);
 mlist{Start+i} = m;
end

Make Polynomial-RBF models with a range of centers.

m = BaseModel.CreateModel('Polynomial-RBF');
m.Properties.Order = [2 2 2 2];
Start = length(mlist);
mlist = [mlist cell(size(Centers))];
for i = 1:length(Centers)
 % Maximum number of centers is set in the nested fit algorithm
 m.FitAlgorithm.WidthAlgorithm.NestedFitAlgorithm.MaxCenters = Centers(i);

12 Model-Based Calibration Toolbox Examples

12-26

 mlist{Start+i} = m;
end

Make alternative models for each response feature and select the best model based on
AICc.

criteria = 'AICc';
CreateAlternativeModels(LocalBTQ, mlist, criteria);

Alter Response Feature Models

Get the alternative responses for knot and alter models using stepwise regression.

knot = LocalBTQ.ResponseFeatures(1);
AltResponse = knot.AlternativeResponses(1);

Get the stepwise statistics.

knot_model = AltResponse.Model;
[stepwise_stats,knot_model] = StepwiseRegression(knot_model);

Use PRESS to find the best term to change, and toggle the stepwise status of the term
with this index.

[bestPRESS, ind] = min(stepwise_stats(:,4));
[stepwise_stats,knot_model] = StepwiseRegression(knot_model, ind);

Get a VIF statistic.

VIF = MultipleVIF(knot_model)

VIF =

 3.1290
 1.2918
 1.6841
 1.1832
 1.3230
 2.6617
 1.6603
 1.3306
 1.2856
 1.4317
 2.6550

 Gasoline Case Study

12-27

Get the RMSE.

RMSE = SummaryStatistics(knot_model, 'RMSE')

RMSE =

 5.1578

Change the model to a Polynomial-RBF with a maximum of 10 centers.

new_knot_model = knot_model.CreateModel('Polynomial-RBF');
new_knot_model.Properties.Order = [1 1 1 1];
new_knot_model.FitAlgorithm.WidthAlgorithm.NestedFitAlgorithm.MaxCenters = 10;
% Fit the model with current data.
[new_knot_model,S] = fit(new_knot_model);

If there were no problems with the changes then update the response, otherwise you will
continue to use the original model.

if strcmp(new_knot_model.Status,'Fitted')
 new_RMSE = SummaryStatistics(new_knot_model,'RMSE')
 % Update the response with the new model.
 UpdateResponse(new_knot_model);
end

new_RMSE =

 3.5086

Make the Two-stage Model for Torque

doMLE = true;
MakeHierarchicalResponse(LocalBTQ, doMLE);
% Look at the Local and Two-Stage RMSE.
BTQ_RMSE = SummaryStatistics(LocalBTQ, {'Local RMSE', 'Two-Stage RMSE'})

BTQ_RMSE =

 0.8319 4.6118

12 Model-Based Calibration Toolbox Examples

12-28

Plot the Two-stage Model of Torque Against Spark

Plot the 5th test

testToPlot = 5;
BTQInputData = TQ_response.DoubleInputData(testToPlot);
BTQResponseData = TQ_response.DoubleResponseData(testToPlot);
BTQPredictedValue = TQ_response.PredictedValue(BTQInputData);
fig = figure;
plot(BTQInputData(:,1), BTQResponseData, 'o', BTQInputData(:,1), BTQPredictedValue, '-');
xlabel('spark');
ylabel('torque');
title('Test 5');
grid on

 Gasoline Case Study

12-29

Build Other Responses

Build models for exhaust temperature and residual fraction.

• Copy outliers from torque model
• Make alternative models for each response feature
• Make two-stage model without MLE

EXTEMP Response

EXTEMP = testplan.Responses(2).LocalResponses(1);
EXTEMP.RemoveOutliers(OutlierIndices(LocalBTQ));
CreateAlternativeModels(EXTEMP,mlist, criteria);
MakeHierarchicalResponse(EXTEMP, false);
EXTEMP_RMSE = SummaryStatistics(EXTEMP, {'Local RMSE', 'Two-Stage RMSE'})

EXTEMP_RMSE =

 10.5648 27.9916

RESIDFRAC Response

RESIDFRAC = testplan.Responses(3).LocalResponses(1);
RESIDFRAC.RemoveOutliers(OutlierIndices(LocalBTQ));
CreateAlternativeModels(RESIDFRAC,mlist, criteria);
ok = MakeHierarchicalResponse(RESIDFRAC, false);
RESIDFRAC_RMSE = SummaryStatistics(RESIDFRAC, {'Local RMSE', 'Two-Stage RMSE'})

if isgraphics(fig)
 % delete figure made during example
 delete(fig)
end

RESIDFRAC_RMSE =

 0.0824 0.5596

12 Model-Based Calibration Toolbox Examples

12-30

Point-by-point Modeling for a Diesel Engine
This example shows how to use the Model-Based Calibration Toolbox™ command-line
functionality for point-by-point engine modeling projects.

Multiple injection diesel engines and gasoline direct-injection engines can often only be
modeled with point-by-point models. You can use point-by-point models to build a model
at each operating point of an engine with the necessary accuracy to produce an optimal
calibration. Point-by-point command-line functionality is necessary to handle the
complexity of developing designs for each operating point.

Why are point-by-point models necessary? Engine actuators and sensors are continually
being added to Engine Management Systems (EMS) in response to ever-increasing engine
emissions, fuel economy, and performance requirements. In some cases, optimal engine
calibration development processes that rely on two-stage modeling may no longer be able
to model engine performance responses with sufficient accuracy across the engine
operating range. Point-by-point models can provide the necessary model accuracy at
measured operating points. However, point-by-point models do not provide estimated
responses at other operating points.

This example uses the two-stage models generated in the diesel case study as a surrogate
for an engine dynamometer or CAE engine model, in order to generate the point-by-point
data for this example. The example shows you how to:

• Generate local designs at each operating point. If insufficient design points can be
collected, you can augment the local design using Sobol sequences.

• Create local multiple models to model each of the responses at each operating point.
• Build a point-by-point boundary model to define the data boundary at each operating

point for later use in calibration optimization.

Finally, you must visually inspect the fitted models to verify that the model quality is
acceptable. You usually need to identify and remove outliers. You can use the command-
line to plot diagnostics and remove outliers, but it is easier to use the graphical and
statistical tools in the Model Browser (mbcmodel) provided in the Model-Based
Calibration Toolbox.

Load Models from Diesel Project

This example uses engine data generated from the models in the diesel case study.

The inputs are MAINSOI, SPEED, BASEFUELMASS, FUELPRESS, VGTPOS, EGRPOS

 Point-by-point Modeling for a Diesel Engine

12-31

DieselProject = mbcmodel.LoadProject(fullfile(mbcpath,'mbctraining','Diesel_project.mat'));
% Store the models in a structure for convenience
DieselResponses = DieselProject.Testplans.Responses;
Models.BTQ = DieselResponses(1);
Models.VGTSPEED = DieselResponses(2);
Models.EQREXH = DieselResponses(3);
Models.PEAKPRESS = DieselResponses(4);
Models.NOX = DieselResponses(6);
Models.EGRMF = DieselResponses(7);

Define Inputs for Point-by-Point Models and Create Local Model

• The operating point variables are speed (SPEED) and brake torque (BTQ).
• The local inputs are main start of injection (MAINSOI), fuel pressure (FUELPRESS),

variable gate turbo position (VGTPOS), and exhaust gas recirculation position
(EGRPOS).

OperatingPointInputs = mbcmodel.modelinput('Symbol',{'SPEED','BTQ'},...
 'Name',{'SPEED','BTQ'},...
 'Units',{'rpm','Nm'},...
 'Range',{[1600 2200],[0 1600]});
LocalInputs = mbcmodel.modelinput('Symbol',{'MAINSOI','FUELPRESS','VGTPOS','EGRPOS'},...
 'Name',{'MAINSOI','FUELPRESS','VGTPOS','EGRPOS'},...
 'Units',{'deg','MPa','ratio','mm'},...
 'Range',{[-9 3],[90 160],[0.2 0.9],[0.5 5]});
% Create a local multiple model
L = mbcmodel.CreateModel('Point-by-Point',LocalInputs);
% Select the best model using the PRESS RMSE statistic.
L.Properties.SelectionStatistic = 'PRESS RMSE';

Define Engine Operating Points

The design for the operating points is a 7 point drive cycle.

Xg = [2200.0 1263.0
 2200.0 947.0
 2200.0 632.0
 2200.0 126.0
 1600.0 1550.0
 1600.0 1163.0
 1600.0 775.0];

OperatingPointDesign = CreateDesign(OperatingPointInputs);
OperatingPointDesign.Points = Xg;
OperatingPointDesign.Name = 'Drive cycle';

12 Model-Based Calibration Toolbox Examples

12-32

Create a Local Design for Each Operating Point

For each operating point, adjust limits for main injection, fuel pressure and VGTPOS, and
generate a 128 point Sobol design.

localDesign = CreateDesign(LocalInputs,'Type','Sobol Sequence');
localDesignGenerator = localDesign.Generator;
NumLocalPoints = 128;
localDesignGenerator.NumberOfPoints = NumLocalPoints;
DList = mbcdoe.design.empty(0, 1);

data = [];
for i = 1:OperatingPointDesign.NumberOfPoints;

 OperatingPoint = OperatingPointDesign.Points(i,:);
 speed = OperatingPoint(1);
 TQDemand = OperatingPoint(2);

Name the Local Design by Operating Point
 localDesign.Name = sprintf('Test %2d (%s=%4.0f,%s=%3.0f)', i,...
 OperatingPointInputs(1).Symbol,OperatingPoint(1),....
 OperatingPointInputs(2).Symbol,OperatingPoint(2));

Set Up Limits Depending on Speed for Local Inputs

When you use the Limits property to specify the input range, you generate a Sobol design
with exactly NumLocalPoints points.

 f = (speed-1600)/(2200-1600);
 % The main soi range varies from [-3,3] at 1600 rpm to
 % [-9,-3] at 2200 rpm.
 localDesignGenerator.Limits(1,:) = (1-f)*[-3,3] + f*[-9,-3];
 % The fuel pressure range varies from [90,130] at 1600 rpm to
 % [120,160] at 2200 rpm.
 localDesignGenerator.Limits(2,:) = (1-f)*[90 120] + f*[110,160];
 % The VGTPOS range varies from [0.2,0.4] at 1600 rpm to
 % [0.6,0.9] at 2200 rpm.
 localDesignGenerator.Limits(3,:) = (1-f)*[0.2 0.4] + f*[0.6 0.9];

 % set design properties and generate local design
 localDesign.Generator = localDesignGenerator;

Collect Engine Data for Local Design

Find the fuel required to obtain the demanded torque for each point in the local design

 Point-by-point Modeling for a Diesel Engine

12-33

 [Xlocal,XTS] = mbcSolveTQ(Models,localDesign.Points,speed,TQDemand);

Augment Designs if Necessary

Check that enough points have been collected after running the 128 point DOE (design of
experiment). Collect extra points by augmenting the Sobol Sequence with the next N
points in the sequence if necessary.

 N = NumLocalPoints;
 count = 1;
 while size(Xlocal,1) < NumLocalPoints*0.75 && count<10
 localDesign = Generate(localDesign,...
 'Skip',N,...
 'NumberOfPoints',N);
 N = N*2;
 % Find the fuel required to obtain the demanded torque for each point in
 % the augmented local design
 [Xlocalaug,XTSaug] = mbcSolveTQ(Models,localDesign.Points,speed,TQDemand);
 Xlocal = [Xlocal; Xlocalaug]; %#ok<AGROW>
 XTS = [XTS; XTSaug]; %#ok<AGROW>
 end

 % Update points in the local design
 localDesign.Points = Xlocal;
 fprintf('%s: %d points\n',localDesign.Name,localDesign.NumberOfPoints);

Test 1 (SPEED=2200,BTQ=1263): 127 points

Test 2 (SPEED=2200,BTQ=947): 128 points

Test 3 (SPEED=2200,BTQ=632): 128 points

Test 4 (SPEED=2200,BTQ=126): 128 points

Test 5 (SPEED=1600,BTQ=1550): 116 points

Test 6 (SPEED=1600,BTQ=1163): 119 points

Test 7 (SPEED=1600,BTQ=775): 128 points

Collect Response Data

Calculate response data from the diesel case study models

 BTQ = TQDemand*ones(size(Xlocal,1),1);
 AFR = 14.46./Models.EQREXH.PredictedValue(XTS);

12 Model-Based Calibration Toolbox Examples

12-34

 EGRMF = Models.EGRMF.PredictedValue(XTS);
 BSNOX = 3600*Models.NOX.PredictedValue(XTS)/159.5573;
 PEAKPRESS = Models.PEAKPRESS.PredictedValue(XTS)/1e6;
 VGTSPEED = Models.VGTSPEED.PredictedValue(XTS);
 BSFC = 5400.*XTS(:,3)./(BTQ*pi);

Check Fit for BSFC

Check RMSE < 2

 [stats,Lbsfc] = Fit(L,Xlocal,BSFC);
 if stats(5)>2
 fprintf('Poor fit for test %d.\n',i)
 end

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 12).

Accumulate Data and Local Designs

You can ensure tests are automatically defined by defining a variable 'logno'.

 data = [data ; Xlocal XTS(:,2:3) BTQ BSFC AFR EGRMF BSNOX PEAKPRESS VGTSPEED i*ones(size(Xlocal,1),1)]; %#ok<AGROW>
 DList(i) = localDesign;

end

Create Project and Test Plan

Create an mbcmodel project and build models

project = mbcmodel.CreateProject('DieselPointByPoint');
% Create test plan
TP = CreateTestplan(project, {LocalInputs,OperatingPointInputs});
TP.Name = 'Point-by-point';

% Assign list of local designs to test plan
TP.Designs{1} = DList;
% Set as best design in test plan
TP.BestDesign{2} = OperatingPointDesign;

Make and Import Data Structure

D = project.CreateData();
s = D.ExportToMBCDataStructure;
s.varNames = {LocalInputs.Name 'SPEED', 'MAINFUEL','BTQ' 'BSFC' 'AFR' 'EGRMF' 'BSNOX' 'PEAKPRESS' 'VGTSPEED','logno'};

 Point-by-point Modeling for a Diesel Engine

12-35

s.varUnits = {'deg','MPa','mm','ratio','rpm','mg/stroke','Nm','g/kWhr','ratio','ratio','g/kWhr','MPa','rpm',''};
s.data = data;

D.BeginEdit;
D.ImportFromMBCDataStructure(s);
D.CommitEdit;
TP.AttachData(D);

Build Point-by-Point Boundary Model

Use a convex hull for local boundaries.

B = TP.Boundary.Local.CreateBoundary('Point-by-Point');
B.LocalModel = CreateBoundary(B.LocalModel,'Convex hull');
% Add point-by-point boundary model to project.
TP.Boundary.Local.Add(B);

Build Response Models

Use a local multiple model and no global model.

Responses = {'BSFC','BSNOX','AFR','EGRMF','PEAKPRESS','VGTSPEED','MAINFUEL'};
for i = 1:length(Responses)
 TP.CreateResponse(Responses{i},L,[]);
end

Inspect and Refine Models

Finally, you must visually inspect the fitted models to verify that the model quality is
acceptable. You usually need to identify and remove outliers. You can use the command-
line to plot diagnostics and remove outliers, but it is easier to use the graphical and
statistical tools in the Model Browser (mbcmodel) provided in the Model-Based
Calibration Toolbox.

You must save the project to a file before loading it into the Model Browser.

project.Save('DieselPointByPoint.mat');

mbcmodel('DieselPointByPoint.mat')

12 Model-Based Calibration Toolbox Examples

12-36

